

Flood Risk Assessment

Site: Highfield Road, Minster, Kent

Client: New Homes and Land

Prepared by: DHA Environment

Eclipse House Eclipse Park

Sittingbourne Road Maidstone ME14 3EN

Date: July 2021

1.1 Introduction

- 1.1.1 DHA Environment has been commissioned by New Homes and Land to provide a Flood Risk Assessment (FRA) showing the possible impact of flooding and on a proposed development of 16 units on a 1.47 hectare greenfield site on land located off Highfield Road, Minster, Kent. This report has been prepared to support the outline planning application.
- 1.1.2 This FRA has been carried out in accordance with the National Planning Policy Framework (NPPF). The NPPF requires that an FRA is prepared for all developments that are located in Flood Zone 1 with a site area greater than one hectare.
- 1.1.3 Given the site consists of 16 units, it is considered to be major development as set out in Article 2(1) of the Town and Country Planning (Development Management Procedure) (England) Order 2010 and as such this report has been prepared to outline the surface water drainage for the site.

1.2 Summary of existing site

Location

1.2.1 The site is located on land off Highfield Road, Minster, Kent and is centred on approximate grid reference 593384,172610. The site occupies a total area of 1.47 hectares although only 0.793 hectares will be developed and currently consists entirely of part residential garden and grazing.

Existing Site

1.2.2 A topographical survey of the site is shown on drawing 15001-TS-01 contained within **Appendix A**. The site falls from a high point of between 33 and 35m AOD

FRA - July 2021 Ref: CS/15001 on the North, South and West boundaries to a low point of 30.7m AOD on the East boundary. The site has the following boundary conditions:

• North - Residential development off Highfield Road.

• East - Oasis Academy

South - Grazing paddocks.

West - Reservoir off Southdown Road.

Existing Drainage regime and surface water run off

- 1.2.3 There are no watercourses or sewers on the site with any surface water following the existing topography running off land to the East.
- 1.2.4 The discharge rates from the site have been calculated by using the Flood Studies Report ICP (SuDS) method based on the total developable site area of 0.793 hectares. The calculations can be seen in **Appendix B** and have been summarised in table 1 below:

Catchment Reference	Qbar (I/s)	1 in 1 year	1 in 30 years	1 in100 years
Total	2.1	1.8	4.9	6.9

Table 1 - Summary of existing runoff rates

- 1.2.5 Reference has been made to Southern Water asset plans which indicate the location of public sewers in the area. These records do not indicate any private drainage that may be present. A copy of the record drawing is shown in **Appendix C**.
- 1.2.6 In October 2011 the ownership of any private sewer serving more than one property was automatically transferred to the Water Authority although many of these sewers are yet to be recorded on the asset plans.

Surface Water

1.2.7 Southern Water asset plans show there to be no surface water sewers within the site however there is a 150mm diameter surface water sewer located approximately 80m to the East of the North East corner of the site.

Foul Water

1.2.8 Southern Water asset plans show there to be 150mm diameter sewer crossing the northern part of the site.

FRA – July 2021 Page 2

Ref: CS/15001

Geology and Hydrogeology

1.2.9 The online British Geological Survey maps indicate that the site is underlain by the London Clay Formation made up of clay and silt. Given the low permeability of Clay bedrock, infiltration SuDS are unlikely to be possible for use on this site. Information published by the Environment Agency shows the site to lay outside of any source protection zones.

1.3 Site Specific Flood Risk Assessment

1.3.1 The National Planning Policy Framework provides guidance on assessing flood risk and seeks to guide development away from areas at risk of flooding from all sources. Planning Practice Guidance defines a number of Flood Zones based on the probability of flooding and provides guidance on the most appropriate form of development within each zone. The flood risk can be summarised as follows:

Zone	Annual probability in any year			
	River Flooding	Sea Flooding		
Zone 1 : Low probability	Less than 1:1000 (<0.1%)	Less than 1:1000 (<0.1%)		
Zone 2: Medium probability	Between 1:1000 and 1 in 100 (0.1% -1%)	Between 1:1000 and 1 in 200 (0.1% - 0.5%)		
Zone 3a : High probability	Greater than 1:100 (>1%)	Greater than 1:200 (>0.5%)		
Zone 3b: Functional floodplain	Greater than 1 in 20 (>5%)	N/A		

Table 2 - NPPF Guidance

1.3.2 Reference has been made to the Environment Agency flood risk map shown in **Appendix D**. This indicates that the proposed development is situated within Flood Zone 1. This Flood Zone comprises of land assessed as having a less than 1 in 1000 annual probability of river or sea flooding (<0.1%) in any year.

Sequential Test

- 1.3.3 The National Planning Policy Framework, requires that a risk based Sequential Test should be applied at all stages of planning with the aim of steering new development to areas at the lowest probability of flooding (Flood Zone 1).
- 1.3.4 The site is located entirely within Flood Zone 1 and as such it is considered to satisfy the Sequential Test.

Vulnerability Classification

- 1.3.5 Planning Practice Guidance Table 2, "Flood Risk Vulnerability Classification", states that buildings used for residential dwellings are classified as "more vulnerable".
- 1.3.6 Planning Practice Guidance Table 3, "Flood Risk Vulnerability and Flood Zone Compatibility", confirms that 'more vulnerable' developments situated in Flood Zone 1 are appropriate and an exception test is not required for this development.

FRA - July 2021 Ref: CS/15001

1.4 Proposed Development

1.4.1 The proposals consist of the construction of 16 dwellings on land located off Highfield Road, Minster, Kent. The proposed development proposals are contained within **Appendix E**.

Aims

1.4.2 Sustainable Urban Drainage (SuDS) techniques will be used to deal with the surface water generated by the development. This will replicate the existing drainage regime by dealing with the surface water at source, to prevent increasing the risk of downstream flooding.

Proposed Surface Water Drainage Strategy

- The proposed impermeable areas are shown on drawing 14615-D-01 contained in 1.4.3 **Appendix F** and show the total impermeable area to be 0.38 hectares.
- 1.4.4 The principles of the proposed surface water drainage are shown on drawing 14615-D-02 contained in **Appendix F**.
- 1.4.5 The access roads, roofs and areas of hardstanding will be drained via trapped qullies connected into a network of gravity surface water sewers that will discharge into an underground cellular storage tank.
- 1.4.6 Flows from the storage tank will connect into a surface water pumping station which will control the outlet to a flow rate of 2l/s which will discharge into a new gravity sewer located in Highfield Road. This in turn will drain to an existing 150mm diameter surface water sewer located approximately 80m to the East of the site in Highfield Road.
- 1.4.7 Based on the above, the proposed drainage system has been modelled using Windes to accommodate all return periods up to and including the 1:100 year + 40% climate change. Calculations are shown in **Appendix F**.
- 1.4.8 Any reinforcement of the existing network will be covered by the Infrastructure Charge required for the connection of each property.

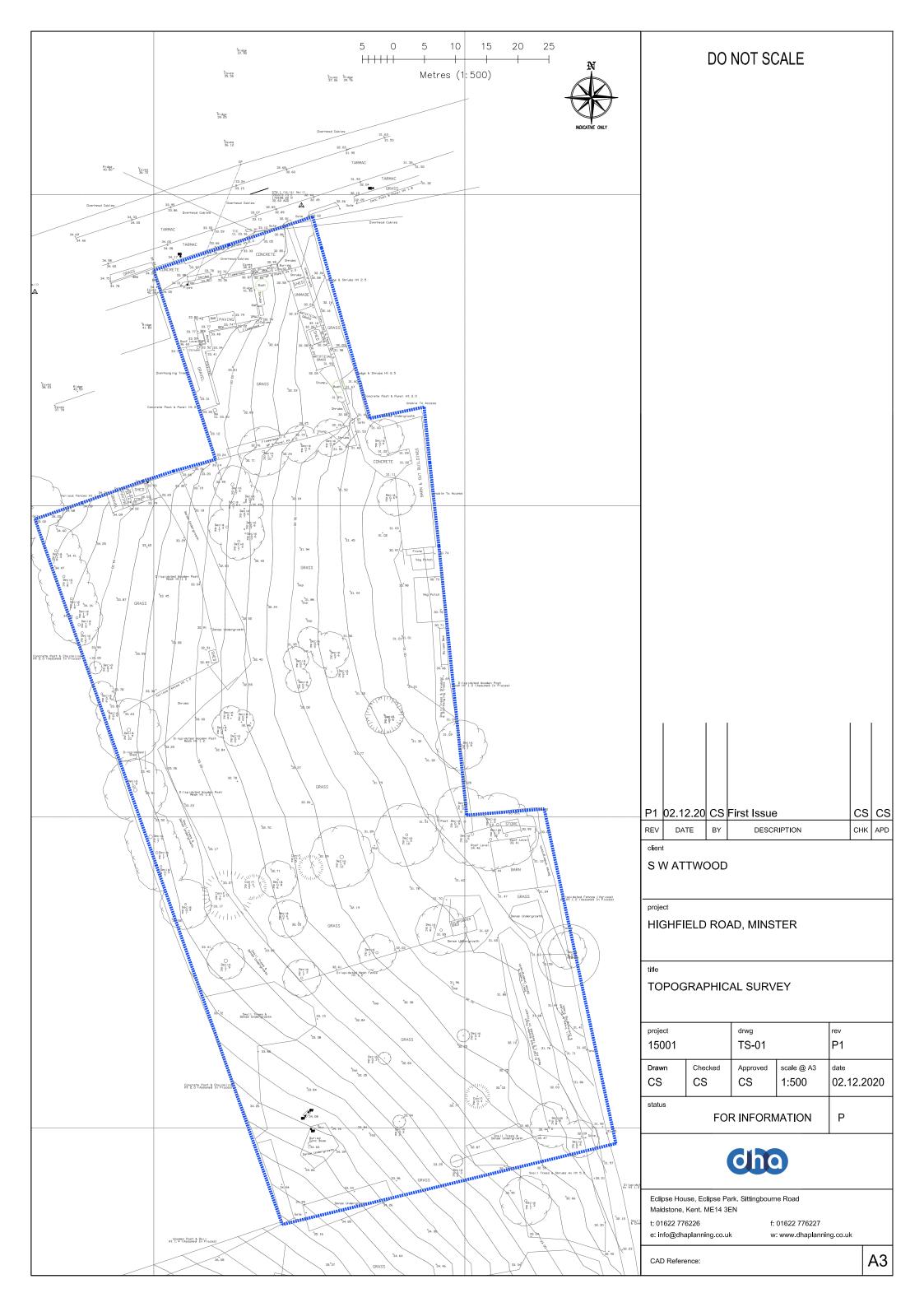
Foul water drainage

- 1.4.9 A peak foul water flow of between 0.74 l/s has been calculated for a development of 16 residential units. This is based on the daily flow rate of 4,000 litres given in Sewers for Adoption 7th Edition for residential dwellings.
- The proposed site will drain via a network of gravity sewers to a new foul water 1.4.10 pumping station. This will pump to the existing 150mm diameter sewer located to the North of the site.
- 1.4.11 Any reinforcement of the existing network will be covered by the Infrastructure Charge required for the connection of each property.

FRA - July 2021 Page 4

Ref: CS/15001

1.5 Conclusions


- 1.5.1 The proposals consist of the provision of 16 dwellings land on located off Highfield Road, Minster, Kent.
- 1.5.2 The site-specific flood risk assessment determined that the site is located entirely in Flood Zone 1; low risk of flooding from rivers or other sources of flooding.
- 1.5.3 Planning Practice Guidance Table 2, "Flood Risk Vulnerability Classification", states that buildings used for dwellings are classified as "more vulnerable".
- 1.5.4 The development is located entirely within Flood Zone 1 and as such is considered to satisfy the sequential test. Planning Practice Guidance Table 1, "Flood Zones", determines all classes of land development are appropriate in Flood Zone 1 and an exception test is not required.
- 1.6 A Sustainable Urban Drainage system will be provided which incorporates an underground cellular tank with a controlled pumped outfall which will be used to accommodate the 1 in 100 year rainfall event with a 40% allowance for climate change. Surface water from the site will connect to an existing surface water sewer in Highfield Road via a new offsite sewer.
- 1.7 Foul drainage from the development will be via a new offsite sewer connecting to the existing foul sewer to the north of the site.

FRA – July 2021 Page 5

Ref: CS/15001

Existing Topographical Survey

Greenfield Runoff Rates

DHA Transport Ltd				
Eclipse House Eclipse Park	Highfield Road			
Sittingbourne Road				
Maidstone ME14 3EN		Micro		
Date 03/12/2020 14:20	Designed by Chris	Drainage		
File	Checked by	Diamade		
Causeway	Source Control 2019.1			

ICP SUDS Mean Annual Flood

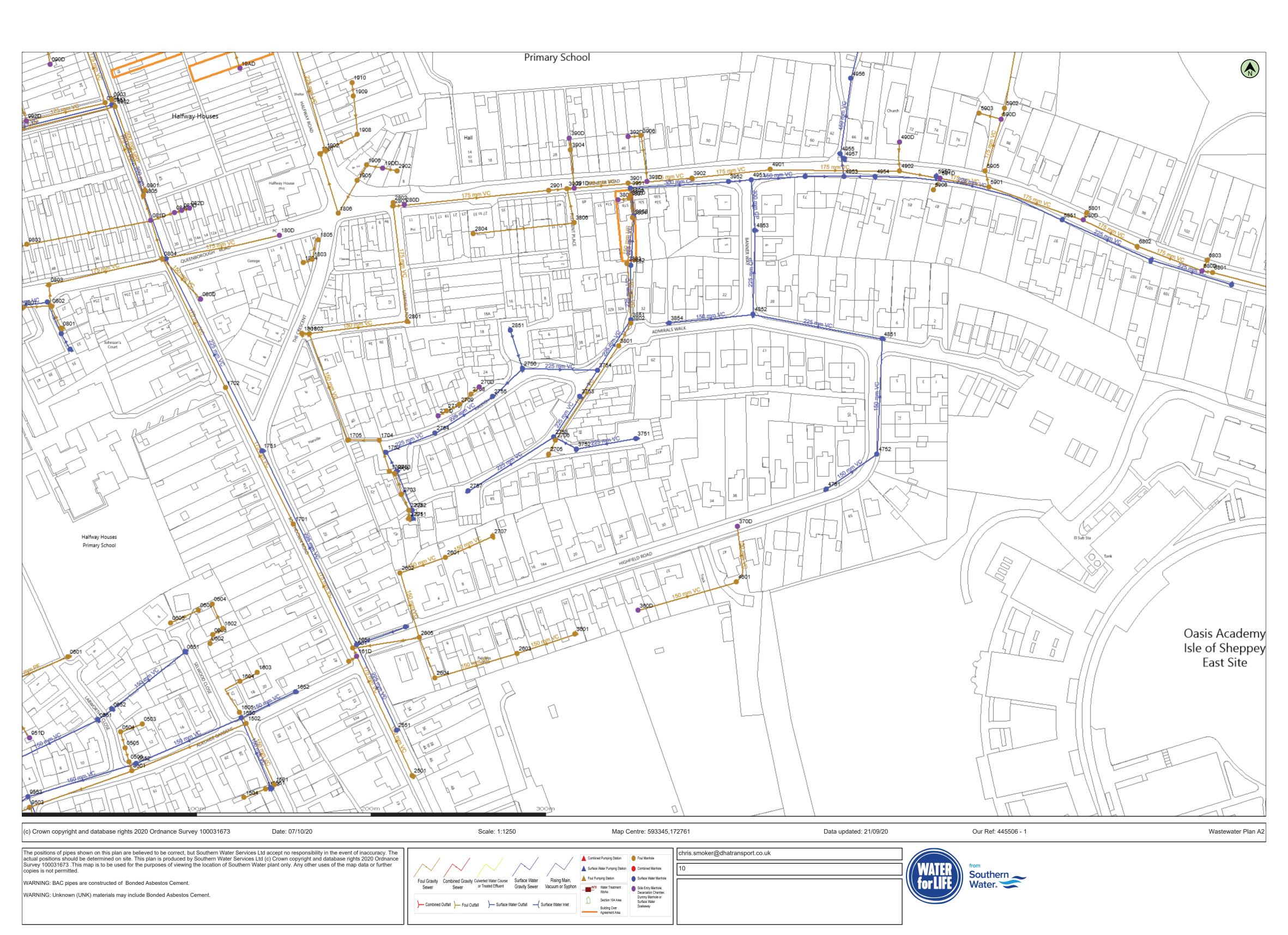
Input

 Return Period (years)
 100
 Soil
 0.400

 Area (ha)
 0.793
 Urban
 0.000

 SAAR (mm)
 576
 Region
 Number
 Region
 7

Results 1/s


QBAR Rural 2.1 QBAR Urban 2.1

Q100 years 6.9

Q1 year 1.8 Q30 years 4.9 Q100 years 6.9

Southern Water Asset Plans

	rence Liquid Type		el Invert Level	Depth to Inve
0501	F	17.46	15.56	
0503	F	0.00	0.00	
0504	F	0.00	0.00	
0505	F	0.00	0.00	
0506	F	0.00	0.00	
0601	F	15.74	14.23	
0602	F	0.00	0.00	
0603	F	0.00	0.00	
0604	F	0.00	0.00	
0605	F	0.00	0.00	
0606	F	0.00	0.00	
0801	F	10.92	9.40	
0802	F	10.56	9.18	
0803	F	10.15	8.40	
0804	F	10.42	7.83	
0805	F	9.48	7.10	
080D	F	0.00	0.00	
081D	F	0.00	0.00	
082D	F	0.00	0.00	
083D	F	0.00	0.00	
084D	F	0.00	0.00	
0901	F	9.46	6.82	
0902	F	8.13	5.54	
0902	F	8.01	5.44	
0903	F	7.99	6.24	
090 4 090D	F	0.00	0.00	
1501	F	22.59	20.06	
1501	F	22.59	17.89	
	F			
1503		0.00	0.00	
1504	F	0.00	0.00	
1601	F	21.08	19.47	
1602	F	0.00	0.00	
1603	F	0.00	0.00	
1604	F	0.00	0.00	
1605	F	0.00	0.00	
161D	F	0.00	0.00	
1701	F	17.33	15.73	
1702	F	13.46	11.83	
1703	F	16.84	14.86	
1704	F	16.04	14.51	
1705	F	15.81	14.15	
1801	F	12.73	12.16	
1802	F	12.75	12.09	
1803	F	0.00	0.00	
1804	F	0.00	0.00	
1805	F	0.00	0.00	
1806	F	0.00	0.00	
180D	F	0.00	0.00	
1901	F	10.00	8.29	
1902	F	9.84	0.00	
1905	F	0.00	0.00	
1906	F	0.00	0.00	
1908	F	0.00	0.00	
1909	F	0.00	0.00	
1910	F	0.00	0.00	
19AD	F	0.00	0.00	
19DD	F	0.00	0.00	
2501	F	22.69	20.80	
2601	F	24.20	22.96	
2602	F	0.00	0.00	
2603	F	32.40	0.00	
2604	F	0.00	0.00	
2605	F	23.39	20.69	
2701	F	20.01	18.38	
2701 2702	F	19.53	17.83	
2703	F	18.30	16.70	
2704	F	17.07	15.53	
2705	F	23.24	21.69	
2706	F	22.61	20.93	
2707	F	27.90	26.80	
2708	F	0.00	0.00	
2709	F	0.00	0.00	
270D	F	0.00	0.00	

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
	F	0.00	0.00	
271D	F	0.00	0.00	
2801	F	14.10	11.43	
2802	F	12.14	10.64	
2803	F	12.12	10.59	
2804	F	0.00	0.00	
280D	F	0.00	0.00	
2901	F	12.09	10.05	
2902	F	0.00	0.00	
	F	35.73	34.99	
3601				
360D	F	0.00	0.00	
370D	F	0.00	0.00	
3801	F -	16.68	12.73	
3802	F	16.14	12.62	
3803	F	12.97	11.16	
3804	F	11.76	10.63	
3805	F	11.77	9.01	
3806	F	0.00	0.00	
3807	F	0.00	0.00	
380D	F	0.00	0.00	
382D	F	0.00	0.00	
3901	F	10.64	0.00	
3902	F	9.77	7.74	
3903	F	0.00	10.05	
3904	F	0.00	0.00	
3906	F	0.00	0.00	
390D	F	0.00	0.00	
391D	F	0.00	0.00	
392D	F	0.00	0.00	
393D	F	0.00	0.00	
4601	F	0.00	0.00	
4901	F		7.25	
		9.35		
4902	F	9.27	7.11	
490D	F	0.00	0.00	
5801	F	11.23	9.88	
580D	F	0.00	0.00	
5901	F	9.79	6.80	
5902	F	7.21	5.82	
5903	F	0.00	0.00	
5905	F	9.55	0.00	
5906	F	0.00	0.00	
590D	F	0.00	0.00	
591D	F	0.00	0.00	
6801	F	12.54	9.26	
6802	F	12.00	8.98	
6803	F	12.54	10.89	
680D	F	0.00	0.00	
9503	F	15.44	14.16	
951D	F	0.00	0.00	
9801	F	10.37	9.54	
9803	F	0.00	0.00	
992D	F	0.00	0.00	
0551	S	16.35	14.83	
0552	S	17.58	16.24	
0651	S	18.02	16.41	
0652	S	16.44	14.95	
0951	S	8.12	7.04	
1550	S	19.84	18.34	
1551	S	22.72	20.16	
1651	S	20.99	19.67	
1652	S	20.96	19.75	
1751	S	15.20	13.94	
1752	S	16.26	14.04	
2551	S	25.03	23.63	
2751	S	20.11	18.56	
2752	S	19.52	17.79	
2753	S	16.99	14.91	
2754	S	16.99	13.92	
2755 2755	S	17.20	13.73	
2756	S	16.74	13.52	
2757	S	21.95	20.05	
2758	S	22.37	19.64	
2851	S	15.12	13.62	

2851

S

15.12

13.62

	ence Liquid Type	<u> </u>	Invert Level	Depth to Invert
3751	S	25.48	23.84	
3752	S	23.62	21.07	
3753	S	19.56	17.54	
3754	S	18.20	13.08	
3851	S	15.47	12.55	
3852	S	13.03	11.45	
3853	S	11.58	10.68	
3854	S	16.18	15.02	
3951	S	10.75	8.93	
3952	S	9.53	8.63	
4751	S	25.83	24.48	
4752	S	22.71	21.47	
4851	S	16.41	15.15	
4852	S	15.13	11.84	
4853	S	10.37	8.86	
4951	S	9.31	0.00	
4953	S	9.19	7.84	
4954	S	9.21	8.08	
4955	S	8.95	7.35	
4956	S	7.73	6.67	
4957	S	9.31	8.34	
5851	S	10.98	10.03	
5950	S	9.28	0.00	
9553	S	15.67	14.04	
			-	+
				-
				-
			-	+
				-

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Environment Agency Plans

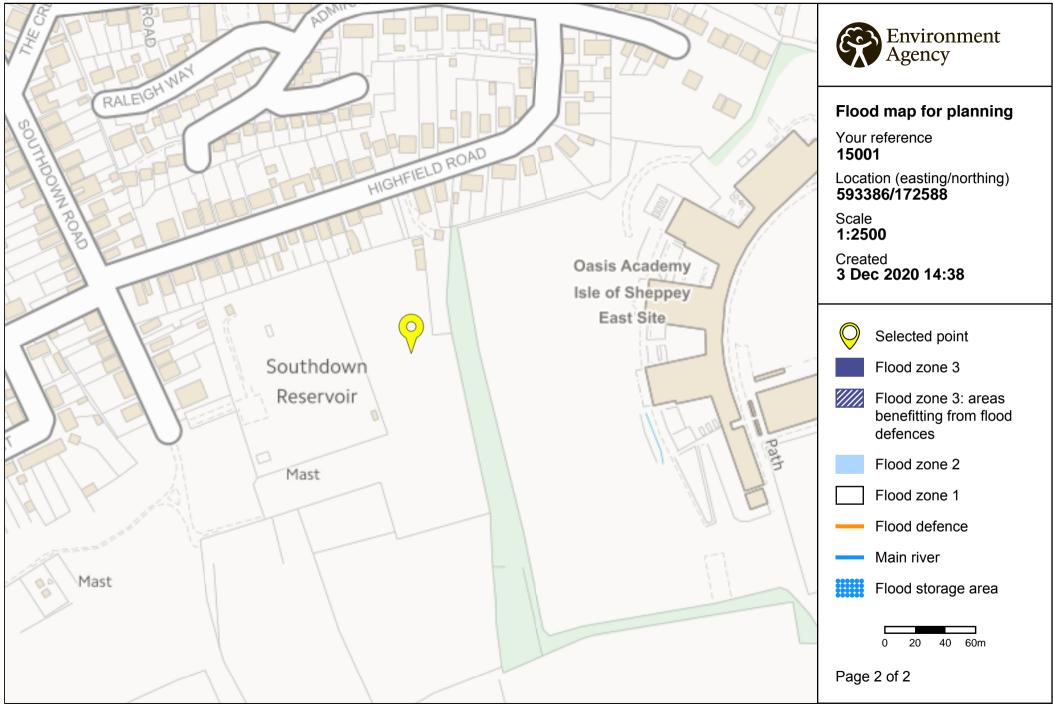
Flood map for planning

Your reference Location (easting/northing) Created

15001 593386/172588 3 Dec 2020 14:38

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:

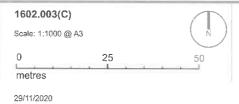

- you don't need to do a flood risk assessment if your development is smaller than 1
 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1
 hectare or affected by other sources of flooding or in an area with critical drainage
 problems

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

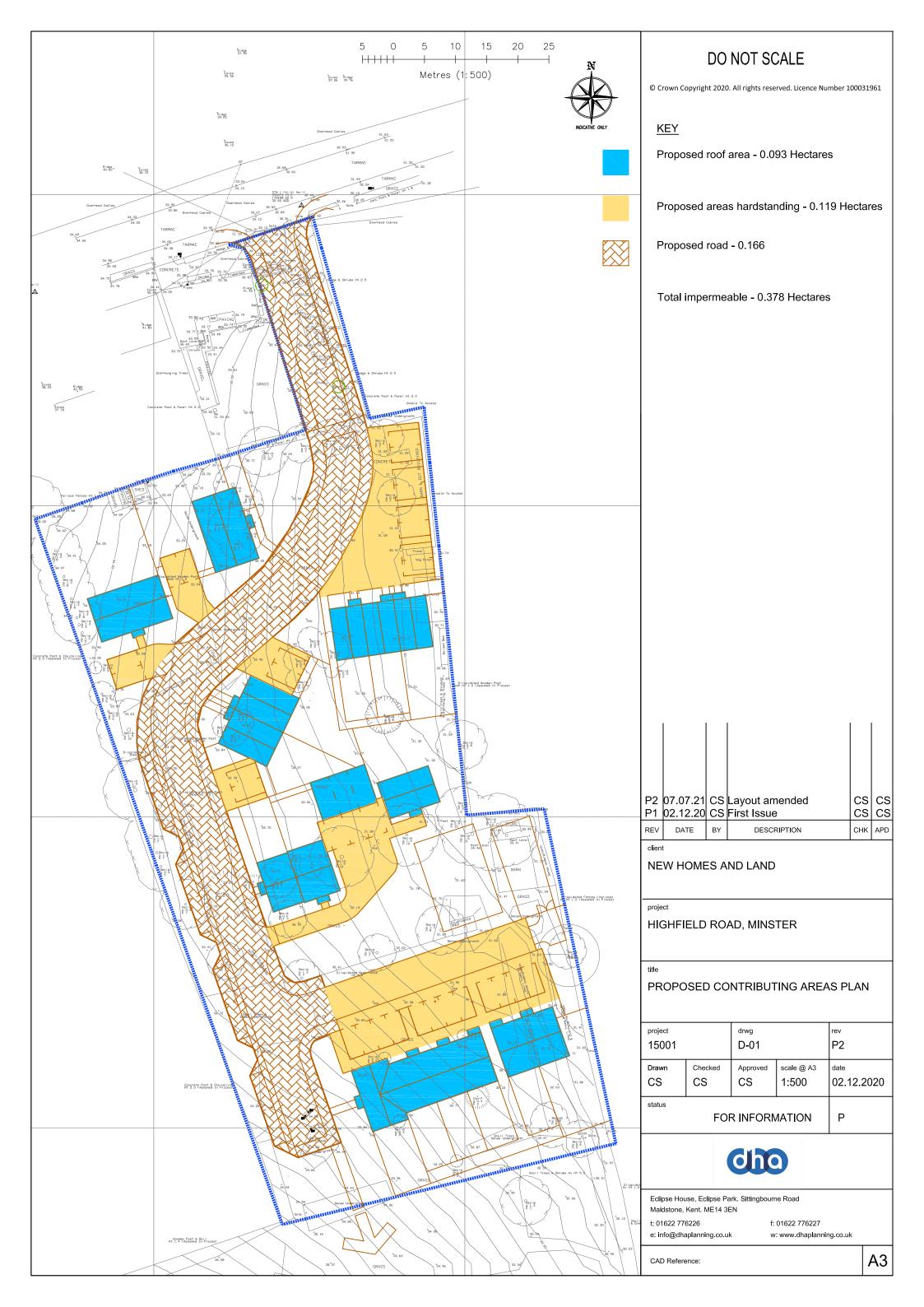
The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

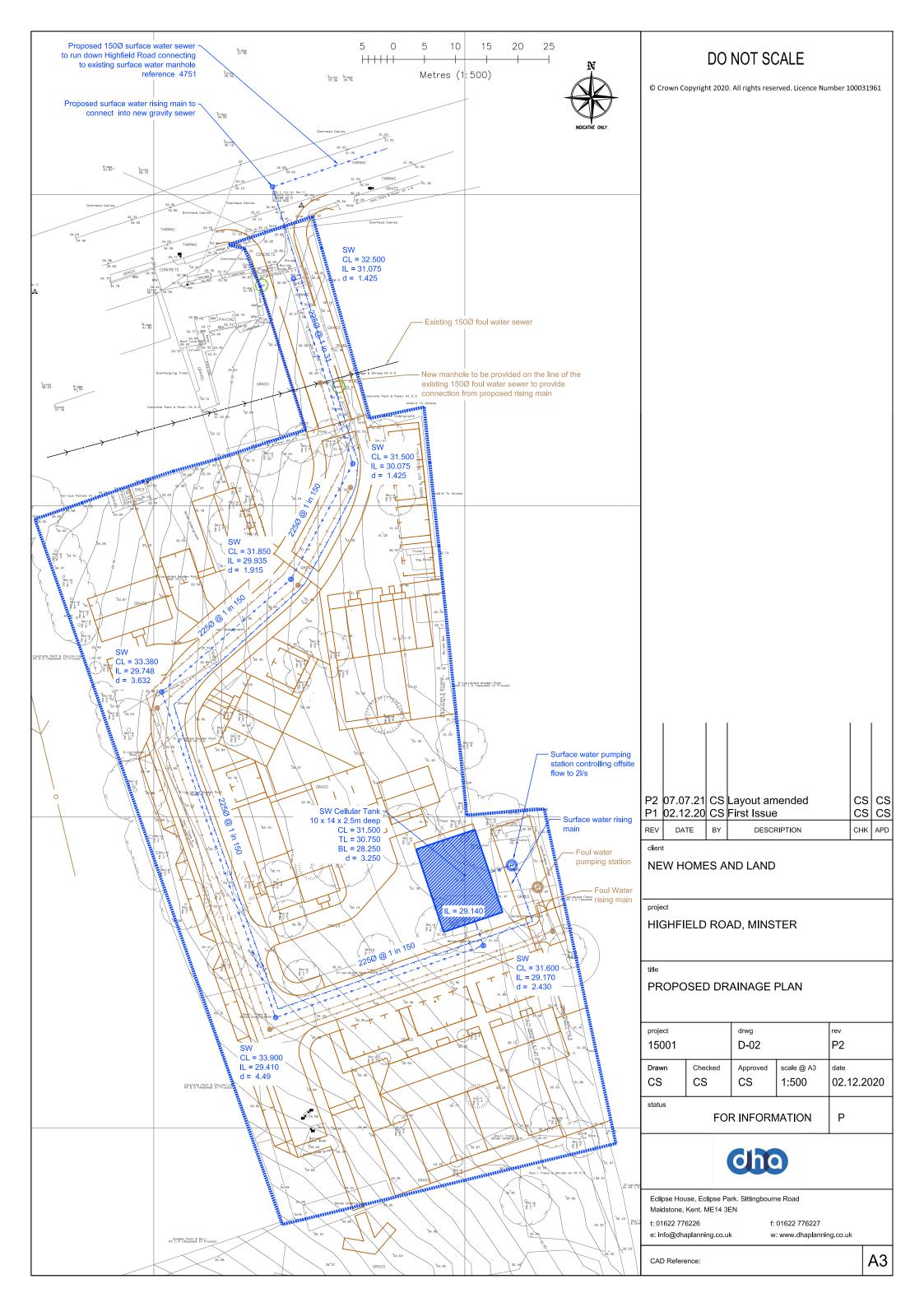


© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Proposed Site Plan

© JB Planning Associates, 2020


Manor, Chells Lane STEVENAGE, SG2 7AA


T 01438 312130

info@jbplanning.com www.jbplanning.com

Proposed Drainage Strategy and Calculations

DHA Transport Ltd	Page 1	
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:41	Designed by Chris	Drainage
File TANK.SRCX	Checked by	Drainage
Causeway	Source Control 2019.1	

Summary of Results for 2 year Return Period

Half Drain Time : 333 minutes.

	Storm		Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
	min Summer			0.0	2.0	2.0		O K
30	min Summer	28.599	0.349	0.0	2.0	2.0	46.4	O K
60	min Summer	28.671	0.421	0.0	2.0	2.0	56.0	O K
120	min Summer	28.731	0.481	0.0	2.0	2.0	64.0	O K
180	min Summer	28.754	0.504	0.0	2.0	2.0	67.1	O K
240	min Summer	28.762	0.512	0.0	2.0	2.0	68.1	O K
360	min Summer	28.762	0.512	0.0	2.0	2.0	68.0	O K
480	min Summer	28.756	0.506	0.0	2.0	2.0	67.3	O K
600	min Summer	28.747	0.497	0.0	2.0	2.0	66.1	O K
720	min Summer	28.737	0.487	0.0	2.0	2.0	64.7	O K
960	min Summer	28.712	0.462	0.0	2.0	2.0	61.5	O K
1440	min Summer	28.661	0.411	0.0	2.0	2.0	54.7	O K
2160	min Summer	28.587	0.337	0.0	2.0	2.0	44.9	O K
2880	min Summer	28.522	0.272	0.0	2.0	2.0	36.2	O K
4320	min Summer	28.423	0.173	0.0	2.0	2.0	23.0	O K
5760	min Summer	28.364	0.114	0.0	2.0	2.0	15.2	O K
7200	min Summer	28.344	0.094	0.0	1.9	1.9	12.4	O K
8640	min Summer	28.333	0.083	0.0	1.7	1.7	11.0	O K
10080	min Summer	28.324	0.074	0.0	1.5	1.5	9.9	O K
15	min Winter	28.557	0.307	0.0	2.0	2.0	40.8	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
				(2 /	\ /	
15	min	Summer	53.097	0.0	37.8	18
30	min	Summer	34.506	0.0	49.1	33
60	min	Summer	21.591	0.0	61.5	62
120	min	Summer	13.202	0.0	75.2	122
180	min	Summer	9.819	0.0	83.9	180
240	min	Summer	7.948	0.0	90.5	240
360	min	Summer	5.891	0.0	100.7	300
480	min	Summer	4.760	0.0	108.5	362
600	min	Summer	4.034	0.0	114.9	428
720	min	Summer	3.524	0.0	120.5	496
960	min	Summer	2.844	0.0	129.6	634
1440	min	Summer	2.102	0.0	143.7	908
2160	min	Summer	1.554	0.0	159.4	1296
2880	min	Summer	1.255	0.0	171.6	1672
4320	min	Summer	0.927	0.0	190.2	2376
5760	min	Summer	0.747	0.0	204.3	3000
7200	min	Summer	0.632	0.0	216.0	3680
8640	min	Summer	0.551	0.0	226.1	4408
10080	min	Summer	0.491	0.0	234.9	5144
15	min	Winter	53.097	0.0	42.3	18

©1982-2019 Innovyze

DHA Transport Ltd	Page 2	
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:41	Designed by Chris	Drainage
File TANK.SRCX	Checked by	Dialilade
Causeway	Source Control 2019.1	

Summary of Results for 2 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	inter	28.643	0.393	0.0	2.0	2.0	52.2	O K
60	min W	inter	28.726	0.476	0.0	2.0	2.0	63.3	O K
120	min W	inter	28.799	0.549	0.0	2.0	2.0	73.0	O K
180	min W	inter	28.829	0.579	0.0	2.0	2.0	77.0	O K
240	min W	inter	28.842	0.592	0.0	2.0	2.0	78.8	O K
360	min W	inter	28.844	0.594	0.0	2.0	2.0	79.1	O K
480	min W	inter	28.833	0.583	0.0	2.0	2.0	77.6	O K
600	min W	inter	28.821	0.571	0.0	2.0	2.0	76.0	O K
720	min W	inter	28.805	0.555	0.0	2.0	2.0	73.9	O K
960	min W	inter	28.768	0.518	0.0	2.0	2.0	68.9	O K
1440	min W	inter	28.686	0.436	0.0	2.0	2.0	58.0	O K
2160	min W	inter	28.569	0.319	0.0	2.0	2.0	42.5	O K
2880	min W	inter	28.471	0.221	0.0	2.0	2.0	29.3	O K
4320	min W	inter	28.352	0.102	0.0	2.0	2.0	13.6	O K
5760	min W	inter	28.332	0.082	0.0	1.6	1.6	11.0	O K
7200	min W	inter	28.320	0.070	0.0	1.4	1.4	9.3	O K
8640	min W	inter	28.311	0.061	0.0	1.2	1.2	8.2	O K
10080	min W	inter	28.305	0.055	0.0	1.1	1.1	7.3	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			34.506	0.0	55.0	33
60	min	Winter	21.591	0.0	68.9	62
120	min	Winter	13.202	0.0	84.2	120
180	min	Winter	9.819	0.0	94.0	176
240	min	Winter	7.948	0.0	101.4	232
360	min	Winter	5.891	0.0	112.8	340
480	min	Winter	4.760	0.0	121.5	388
600	min	Winter	4.034	0.0	128.7	464
720	min	Winter	3.524	0.0	134.9	540
960	min	Winter	2.844	0.0	145.2	692
1440	min	Winter	2.102	0.0	161.0	982
2160	min	Winter	1.554	0.0	178.5	1384
2880	min	Winter	1.255	0.0	192.1	1732
4320	min	Winter	0.927	0.0	213.0	2288
5760	min	Winter	0.747	0.0	228.8	2992
7200	min	Winter	0.632	0.0	241.9	3680
8640	min	Winter	0.551	0.0	253.2	4416
10080	min	Winter	0.491	0.0	263.1	5144

DHA Transport Ltd						
Eclipse House Eclipse Park	Highfield Road					
Sittingbourne Road	Minster					
Maidstone ME14 3EN		Micro				
Date 07/07/2021 15:41	Designed by Chris	Drainage				
File TANK.SRCX	Checked by	praniage				
Causeway	Source Control 2019.1	•				

Rainfall Details

Return Period (years) 2 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 26.250 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.380

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.380

DHA Transport Ltd		Page 4
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:41	Designed by Chris	Drainage
File TANK.SRCX	Checked by	Dialilade
Causeway	Source Control 2019.1	•

Model Details

Storage is Online Cover Level (m) 31.500

Cellular Storage Structure

Invert Level (m) 28.250 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²) E	Depth	(m) Ar	ea (m²)	Inf.	Area	(m²)
0.000	140.0		0.0	1.3	300	140.0			0.0
0.100	140.0		0.0	1.4	100	140.0			0.0
0.200	140.0		0.0	1.5	500	140.0			0.0
0.300	140.0		0.0	1.6	500	140.0			0.0
0.400	140.0		0.0	1.7	700	140.0			0.0
0.500	140.0		0.0	1.8	300	140.0			0.0
0.600	140.0		0.0	1.9	900	140.0			0.0
0.700	140.0		0.0	2.0	000	140.0			0.0
0.800	140.0		0.0	2.1	100	140.0			0.0
0.900	140.0		0.0	2.2	200	140.0			0.0
1.000	140.0		0.0	2.3	300	140.0			0.0
1.100	140.0		0.0	2.4	100	140.0			0.0
1.200	140.0		0.0	2.5	500	140.0			0.0

Pump Outflow Control

Invert Level (m) 28.250

Depth (m)	Flow $(1/s)$						
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.000	2.0000	1.800	2.0000	2.600	2.0000
0.300	2.0000	1.100	2.0000	1.900	2.0000	2.700	2.0000
0.400	2.0000	1.200	2.0000	2.000	2.0000	2.800	2.0000
0.500	2.0000	1.300	2.0000	2.100	2.0000	2.900	2.0000
0.600	2.0000	1.400	2.0000	2.200	2.0000	3.000	2.0000
0.700	2.0000	1.500	2.0000	2.300	2.0000		
0.800	2.0000	1.600	2.0000	2.400	2.0000		

DHA Transport Ltd	Page 1	
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:42	Designed by Chris	Drainage
File TANK.SRCX	Checked by	nialilade
Causeway	Source Control 2019.1	

Summary of Results for 30 year Return Period

Half Drain Time : 674 minutes.

	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min Sumn	ner 28.780	0.530	0.0	2.0	2.0	70.5	O K
30	min Sumn	ner 28.928	0.678	0.0	2.0	2.0	90.1	O K
60	min Sumn	ner 29.065	0.815	0.0	2.0	2.0	108.4	O K
120	min Sumn	ner 29.182	0.932	0.0	2.0	2.0	123.9	O K
180	min Sumn	ner 29.238	0.988	0.0	2.0	2.0	131.4	O K
240	min Sumn	ner 29.268	3 1.018	0.0	2.0	2.0	135.3	O K
360	min Sumn	ner 29.288	3 1.038	0.0	2.0	2.0	138.1	O K
480	min Sumn	ner 29.281	1.031	0.0	2.0	2.0	137.2	O K
600	min Sumn	ner 29.263	3 1.013	0.0	2.0	2.0	134.7	O K
720	min Sumn	ner 29.24	0.994	0.0	2.0	2.0	132.2	O K
960	min Sumn	ner 29.20	0.956	0.0	2.0	2.0	127.2	O K
1440	min Sumn	ner 29.134	0.884	0.0	2.0	2.0	117.6	O K
2160	min Sumn	ner 29.030	0.780	0.0	2.0	2.0	103.8	O K
2880	min Sumn	ner 28.933	0.683	0.0	2.0	2.0	90.8	O K
4320	min Sumn	ner 28.760	0.510	0.0	2.0	2.0	67.8	O K
5760	min Sumn	ner 28.618	0.368	0.0	2.0	2.0	48.9	O K
7200	min Sumn	ner 28.509	0.259	0.0	2.0	2.0	34.4	O K
8640	min Sumn	ner 28.429	0.179	0.0	2.0	2.0	23.8	O K
10080	min Sumn	ner 28.378	0.128	0.0	2.0	2.0	17.0	O K
15	min Wint	er 28.845	0.595	0.0	2.0	2.0	79.1	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			101.239	0.0	72.1	19
30	min	Summer	65.473	0.0	93.2	34
60	min	Summer	40.257	0.0	114.7	64
120	min	Summer	23.937	0.0	136.4	122
180	min	Summer	17.563	0.0	150.1	182
240	min	Summer	14.070	0.0	160.3	242
360	min	Summer	10.271	0.0	175.6	360
480	min	Summer	8.204	0.0	187.0	480
600	min	Summer	6.888	0.0	196.2	548
720	min	Summer	5.969	0.0	204.1	600
960	min	Summer	4.758	0.0	216.9	722
1440	min	Summer	3.453	0.0	236.1	982
2160	min	Summer	2.503	0.0	256.7	1388
2880	min	Summer	1.990	0.0	272.2	1788
4320	min	Summer	1.441	0.0	295.5	2552
5760	min	Summer	1.146	0.0	313.5	3288
7200	min	Summer	0.960	0.0	328.2	3960
8640	min	Summer	0.830	0.0	340.7	4592
10080	min	Summer	0.735	0.0	351.7	5248
15	min	Winter	101.239	0.0	80.7	19

©1982-2019 Innovyze

DHA Transport Ltd		Page 2
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:42	Designed by Chris	Drainage
File TANK.SRCX	Checked by	Dialilade
Causeway	Source Control 2019.1	

Summary of Results for 30 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	inter	29.012	0.762	0.0	2.0	2.0	101.3	O K
60	min W	inter	29.169	0.919	0.0	2.0	2.0	122.2	O K
120	min W	inter	29.305	1.055	0.0	2.0	2.0	140.3	O K
180	min W	inter	29.374	1.124	0.0	2.0	2.0	149.5	O K
240	min W	inter	29.413	1.163	0.0	2.0	2.0	154.7	O K
360	min W	inter	29.448	1.198	0.0	2.0	2.0	159.4	O K
480	min W	inter	29.453	1.203	0.0	2.0	2.0	160.0	O K
600	min W	inter	29.441	1.191	0.0	2.0	2.0	158.4	O K
720	min W	inter	29.419	1.169	0.0	2.0	2.0	155.5	O K
960	min W	inter	29.366	1.116	0.0	2.0	2.0	148.4	O K
1440	min W	inter	29.267	1.017	0.0	2.0	2.0	135.3	O K
2160	min W	inter	29.113	0.863	0.0	2.0	2.0	114.7	O K
2880	min W	inter	28.963	0.713	0.0	2.0	2.0	94.8	O K
4320	min W	inter	28.700	0.450	0.0	2.0	2.0	59.8	O K
5760	min W	inter	28.499	0.249	0.0	2.0	2.0	33.1	O K
7200	min W	inter	28.373	0.123	0.0	2.0	2.0	16.3	O K
8640	min W	inter	28.342	0.092	0.0	1.8	1.8	12.3	O K
10080	min W	inter	28.332	0.082	0.0	1.6	1.6	10.9	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			65 450	0 0	104.4	2.2
			65.473	0.0	104.4	33
60	min	Winter	40.257	0.0	128.4	62
120	min	Winter	23.937	0.0	152.8	120
180	min	Winter	17.563	0.0	168.2	180
240	min	Winter	14.070	0.0	179.6	238
360	min	Winter	10.271	0.0	196.7	352
480	min	Winter	8.204	0.0	209.5	464
600	min	Winter	6.888	0.0	219.8	574
720	min	Winter	5.969	0.0	228.6	678
960	min	Winter	4.758	0.0	243.0	772
1440	min	Winter	3.453	0.0	264.4	1070
2160	min	Winter	2.503	0.0	287.5	1516
2880	min	Winter	1.990	0.0	304.9	1932
4320	min	Winter	1.441	0.0	331.1	2720
5760	min	Winter	1.146	0.0	351.1	3392
7200	min	Winter	0.960	0.0	367.6	3896
8640	min	Winter	0.830	0.0	381.6	4416
10080	min	Winter	0.735	0.0	393.9	5144

DHA Transport Ltd		Page 3
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:42	Designed by Chris	Drainage
File TANK.SRCX	Checked by	Diamade
Causeway	Source Control 2019.1	'

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 26.250 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.380

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.380

DHA Transport Ltd		Page 4
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:42	Designed by Chris	Drainage
File TANK.SRCX	Checked by	niailiade
Causeway	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 31.500

Cellular Storage Structure

Invert Level (m) 28.250 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth (m)	Area (m²)	Inf. Area	(m²)
0.000	140.0		0.0	1.300	140.0		0.0
0.100	140.0		0.0	1.400	140.0		0.0
0.200	140.0		0.0	1.500	140.0		0.0
0.300	140.0		0.0	1.600	140.0		0.0
0.400	140.0		0.0	1.700	140.0		0.0
0.500	140.0		0.0	1.800	140.0		0.0
0.600	140.0		0.0	1.900	140.0		0.0
0.700	140.0		0.0	2.000	140.0		0.0
0.800	140.0		0.0	2.100	140.0		0.0
0.900	140.0		0.0	2.200	140.0		0.0
1.000	140.0		0.0	2.300	140.0		0.0
1.100	140.0		0.0	2.400	140.0		0.0
1.200	140.0		0.0	2.500	140.0		0.0

Pump Outflow Control

Invert Level (m) 28.250

Depth (m)	Flow $(1/s)$						
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.000	2.0000	1.800	2.0000	2.600	2.0000
0.300	2.0000	1.100	2.0000	1.900	2.0000	2.700	2.0000
0.400	2.0000	1.200	2.0000	2.000	2.0000	2.800	2.0000
0.500	2.0000	1.300	2.0000	2.100	2.0000	2.900	2.0000
0.600	2.0000	1.400	2.0000	2.200	2.0000	3.000	2.0000
0.700	2.0000	1.500	2.0000	2.300	2.0000		
0.800	2.0000	1.600	2.0000	2.400	2.0000		

DHA Transport Ltd		Page 1
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:39	Designed by Chris	Drainage
File TANK.SRCX	Checked by	Dialilade
Causeway	Source Control 2019.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 1372 minutes.

	Storm Event		Max Level	-	Max Infiltration				Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min Sun	nmer	29.231	0.981	0.0	2.0	2.0	130.4	O K
30	min Sun	nmer	29.516	1.266	0.0	2.0	2.0	168.3	O K
60	min Sun	nmer	29.782	1.532	0.0	2.0	2.0	203.8	O K
120	min Sun	nmer	30.012	1.762	0.0	2.0	2.0	234.3	O K
180	min Sum	nmer	30.136	1.886	0.0	2.0	2.0	250.9	O K
240	min Sum	nmer	30.215	1.965	0.0	2.0	2.0	261.4	O K
360	min Sun	nmer	30.305	2.055	0.0	2.0	2.0	273.3	O K
480	min Sun	nmer	30.345	2.095	0.0	2.0	2.0	278.6	O K
600	min Sun	nmer	30.358	2.108	0.0	2.0	2.0	280.3	O K
720	min Sun	nmer	30.353	2.103	0.0	2.0	2.0	279.6	O K
960	min Sun	nmer	30.310	2.060	0.0	2.0	2.0	273.9	O K
1440	min Sun	nmer	30.187	1.937	0.0	2.0	2.0	257.6	O K
2160	min Sun	nmer	30.035	1.785	0.0	2.0	2.0	237.4	O K
2880	min Sun	nmer	29.906	1.656	0.0	2.0	2.0	220.2	O K
4320	min Sun	nmer	29.672	1.422	0.0	2.0	2.0	189.2	O K
5760	min Sun	nmer	29.463	1.213	0.0	2.0	2.0	161.4	O K
7200	min Sun	nmer	29.273	1.023	0.0	2.0	2.0	136.1	O K
8640	min Sun	nmer	29.101	0.851	0.0	2.0	2.0	113.2	O K
10080	min Sun	nmer	28.948	0.698	0.0	2.0	2.0	92.8	O K
15	min Wir	nter	29.350	1.100	0.0	2.0	2.0	146.3	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			185.630	0.0	132.0	19
30	min	Summer	120.567	0.0	167.1	34
60	min	Summer	73.889	0.0	210.6	64
120	min	Summer	43.472	0.0	247.8	124
180	min	Summer	31.706	0.0	271.1	184
240	min	Summer	25.287	0.0	288.2	242
360	min	Summer	18.336	0.0	313.0	362
480	min	Summer	14.573	0.0	329.8	482
600	min	Summer	12.186	0.0	339.1	602
720	min	Summer	10.523	0.0	339.3	720
960	min	Summer	8.342	0.0	336.7	960
1440	min	Summer	6.003	0.0	329.6	1200
2160	min	Summer	4.312	0.0	442.4	1560
2880	min	Summer	3.407	0.0	466.0	1960
4320	min	Summer	2.442	0.0	501.1	2768
5760	min	Summer	1.930	0.0	528.2	3576
7200	min	Summer	1.609	0.0	550.2	4328
8640	min	Summer	1.386	0.0	568.9	5096
10080	min	Summer	1.222	0.0	585.2	5840
15	min	Winter	185.630	0.0	147.3	19

©1982-2019 Innovyze

DHA Transport Ltd		Page 2
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:39	Designed by Chris	Drainage
File TANK.SRCX	Checked by	Dialilade
Causeway	Source Control 2019.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min	Winter	29.671	1.421	0.0	2.0	2.0	189.0	O K
60	min 1	Winter	29.972	1.722	0.0	2.0	2.0	229.1	O K
120	min '	Winter	30.237	1.987	0.0	2.0	2.0	264.3	O K
180	min '	Winter	30.384	2.134	0.0	2.0	2.0	283.8	O K
240	min 1	Winter	30.479	2.229	0.0	2.0	2.0	296.5	O K
360	min 1	Winter	30.593	2.343	0.0	2.0	2.0	311.6	O K
480	min 1	Winter	30.652	2.402	0.0	2.0	2.0	319.4	O K
600	min '	Winter	30.680	2.430	0.0	2.0	2.0	323.2	O K
720	min 1	Winter	30.688	2.438	0.0	2.0	2.0	324.3	O K
960	min 1	Winter	30.668	2.418	0.0	2.0	2.0	321.6	O K
1440	min 1	Winter	30.548	2.298	0.0	2.0	2.0	305.6	O K
2160	min '	Winter	30.343	2.093	0.0	2.0	2.0	278.4	O K
2880	min '	Winter	30.165	1.915	0.0	2.0	2.0	254.7	O K
4320	min '	Winter	29.820	1.570	0.0	2.0	2.0	208.8	O K
5760	min 1	Winter	29.503	1.253	0.0	2.0	2.0	166.6	O K
7200	min 1	Winter	29.215	0.965	0.0	2.0	2.0	128.4	O K
8640	min '	Winter	28.962	0.712	0.0	2.0	2.0	94.7	O K
0800	min 1	Winter	28.746	0.496	0.0	2.0	2.0	65.9	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			100 505	0 0	170.0	2.2
			120.567	0.0	172.2	
60	min	Winter	73.889	0.0	235.9	64
120	min	Winter	43.472	0.0	277.5	122
180	min	Winter	31.706	0.0	303.4	180
240	min	Winter	25.287	0.0	321.8	240
360	min	Winter	18.336	0.0	341.5	356
480	min	Winter	14.573	0.0	341.1	474
600	min	Winter	12.186	0.0	340.0	590
720	min	Winter	10.523	0.0	339.0	702
960	min	Winter	8.342	0.0	336.7	930
1440	min	Winter	6.003	0.0	331.2	1356
2160	min	Winter	4.312	0.0	495.5	1688
2880	min	Winter	3.407	0.0	521.9	2136
4320	min	Winter	2.442	0.0	561.0	3024
5760	min	Winter	1.930	0.0	591.5	3864
7200	min	Winter	1.609	0.0	616.1	4616
8640	min	Winter	1.386	0.0	637.2	5360
10080	min	Winter	1.222	0.0	655.6	6048

DHA Transport Ltd		Page 3
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:39	Designed by Chris	Drainage
File TANK.SRCX	Checked by	prail lads
Causeway	Source Control 2019.1	,

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 26.250 Shortest Storm (mins) 15
Ratio R 0.400 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.380

Time (mins) Area From: To: (ha)

DHA Transport Ltd		Page 4
Eclipse House Eclipse Park	Highfield Road	
Sittingbourne Road	Minster	
Maidstone ME14 3EN		Micro
Date 07/07/2021 15:39	Designed by Chris	Drainage
File TANK.SRCX	Checked by	prairiage
Causeway	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 31.500

Cellular Storage Structure

Invert Level (m) 28.250 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²) E	Depth	(m) Ar	ea (m²)	Inf.	Area	(m²)
0.000	140.0		0.0	1.3	300	140.0			0.0
0.100	140.0		0.0	1.4	100	140.0			0.0
0.200	140.0		0.0	1.5	500	140.0			0.0
0.300	140.0		0.0	1.6	500	140.0			0.0
0.400	140.0		0.0	1.7	700	140.0			0.0
0.500	140.0		0.0	1.8	300	140.0			0.0
0.600	140.0		0.0	1.9	900	140.0			0.0
0.700	140.0		0.0	2.0	000	140.0			0.0
0.800	140.0		0.0	2.1	100	140.0			0.0
0.900	140.0		0.0	2.2	200	140.0			0.0
1.000	140.0		0.0	2.3	300	140.0			0.0
1.100	140.0		0.0	2.4	100	140.0			0.0
1.200	140.0		0.0	2.5	500	140.0			0.0

Pump Outflow Control

Invert Level (m) 28.250

Depth (m)	Flow $(1/s)$						
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000	1.000	2.0000	1.800	2.0000	2.600	2.0000
0.300	2.0000	1.100	2.0000	1.900	2.0000	2.700	2.0000
0.400	2.0000	1.200	2.0000	2.000	2.0000	2.800	2.0000
0.500	2.0000	1.300	2.0000	2.100	2.0000	2.900	2.0000
0.600	2.0000	1.400	2.0000	2.200	2.0000	3.000	2.0000
0.700	2.0000	1.500	2.0000	2.300	2.0000		
0.800	2.0000	1.600	2.0000	2.400	2.0000		