PHASE 1B OF A RESIDENTIAL DEVELOPMENT AT WHITFIELD, DOVER, KENT

CLIENT: Halsbury Homes (South East) Limited
REFERENCE: JAH/18.185/GGRA
DATE: 6 June 2019

CONTENTS

1. INTRODUCTION 1
2. BACKGROUND INFORMATION 2
2.1 SITE LOCATION AND DESCRIPTION 3
2.2 GEOLOGY 3
2.3 HISTORICAL INFORMATION 4
2.4 CONCEPTUAL MODEL 4
3. INTRUSIVE INVESTIGATION 5
3.1 FIELDWORK 5
3.2 GROUND CONDITIONS 6
4. GROUND GAS RISK ASSESSMENT 9
4.1 GENERAL 9
4.2 RISK ASSESSMENT 9
4.3 GAS PROTECTION MEASURES 11
4.4 CONCLUSION 12
5. SUMMARY 13

APPENDICES

APPENDIX A: REFERENCES
APPENDIX B: WINDOWLESS DYNAMIC SAMPLING AND INSTRUMENTATION RECORDS
APPENDIX C: GAS MONITORING RESULTS
APPENDIX D: DRAWINGS
APPENDIX E: RISK ASSESSMENT CLASSIFICATION

1. INTRODUCTION

It is proposed to develop Phase 1B of the wider residential development at Whitfield, Dover, Kent (Fig. 18.185/GGRA/01) for residential end use. At the instruction of Halsbury Homes (South East) Limited (the "Client"), an investigation was carried out to provide information on the subsoil conditions to enable an assessment of the potential ground gas risks.

The report has been carried out in general accordance with accepted best practice and methodologies (BS10175:2011+A2:2017, BS5930:2015, BS8485:2015+A1:2019, BS8576:2013, and CIRIA C665 (Wilson et al, 2007)). The assessment and recommendations contained within this report are based on data from a series of exploratory holes and a subsequent monitoring programme. Extrapolation between and to other parts of the site is considered within the light of the geo-environmental setting as interpreted, but no responsibility can be accepted for conditions varying from those on which the report is based.

The report was prepared for the sole and exclusive use of the Client and its advisors. Other parties using the contained information do so at their own risk and any duty of care to those parties is specifically excluded subject to copyright as detailed below.

The copyright of any proposal or any data presented in the report, including without exclusion all text and all procedures and methods developed by A F Howland Associates Limited is held by A F Howland Associates Limited and all rights to such are reserved.

No part of the content of, procedures described, or other facets of the report will be copied or used by others outside of the immediate context for which the work was commissioned without the express and specific request and approval to do so in writing.

2. BACKGROUND INFORMATION

The site and surrounding development area has been subject to many phases of investigation. The following reports were considered relevant to the development of Phase 1 B , and a summary is provided were applicable.

Reports pertinent to Phase 1B

Interpretive Ground Investigation Report, A F Howland Associates Limited (2018a) A geotechnical ground investigation covering Phase 1B and 1C, comprising 10 No. windowless dynamic sampling holes (referenced WSO1 to WS10), 12 No. dynamic cone penetrometer tests (referenced CBRO1 to CBR12), 15 No. trial pits (referenced TP01 to TP15), and six number trial pits with subsequent soakage testing (referenced BREO1 to BREO6).

Factual Ground Investigation Report, A F Howland Associates Limited (2018b)
A factual investigation covering Phase 1B comprising 4 No. trial pits with subsequent soakage testing (referenced BREO7 to BREO9 and BREO9A).

Report available for the wider development area

Interpretive Ground Investigation Report - Whole development site overview, Southern Testing Laboratories Limited (2009)

A Geotechnical and contamination ground investigation was carried out for the entire development site, comprising a phase I desk study and preliminary intrusive investigation of 25 No. trial pits spaced at 150 m centres, all with accompanying dynamic cone penetrometer tests, and 8 No . with subsequent soakage tests. The wider development area was identified as lying within an area requiring radon protection to be implemented. Only infilled chalk pits were identified as a potential source of ground gases that may impact upon the proposed end use of the development. Given the size and age of filling of these pits, they were concluded to not pose a significant gas risk to the wider site and only pose a localised risk within their immediate vicinity. No such pits were noted within the area defined as Phase 1B of the development.

Interpretive Ground Investigation Report - Phase 1A, WSP | Parsons Brinckerhoff (2016) A geotechnical and contamination ground investigation, including a ground gas risk assessment for Phase 1A of the development. Three rounds of ground gas monitoring targeting the potential ground gas generation from the shallow chalk underlying the site were carried out. The results of the monitoring determined that the site was within Characteristic Situation 1 and protective measures were not required.

Factual Ground Investigation Report, A F Howland Associates Limited (2019) A factual investigation for the proposed public open spaces, to the north and south of Phase C, comprising 23 No. trial pits with subsequent soakage testing (referenced BRE101 to BRE122 and BRE122A).

2.1 SITE LOCATION AND DESCRIPTION

The area of investigation lies approximately a kilometre north east of the village of Whitfield, approximately 3.5 km north of Dover, Kent, at National Grid reference 631116 E, 145265 N and at an elevation of between 105 and 115 m above Ordnance Datum (aOD).

The site and immediate surrounding area were formerly agricultural land, which is undergoing residential development. The first phase of development is nearing completion to the south east of the site (Phase 1A). The main construction and storage compound is immediately to the north of the site, with parts of the site currently being used to store construction materials and soil stockpiles.

2.2 GEOLOGY

The regional geology as mapped for the area by the British Geological Survey (BGS, 2019) shows a bedrock geology of the Seaford Chalk Formation overlain by superficial deposits. There is an inferred fault within the bedrock geology that approximately cuts across the northern part of the site on a north east to south west alignment. Superficial deposits of the Clay-with-Flints Formation are mapped along the north western boundary of the site. Superficial Head deposits are mapped across the remainder of the site, comprising clay, silt, sand and gravel. The superficial geology in the lower part of the site was previously referred to as Dry Valley and Nailbourne Deposits in the WSP and Southern Testing reports.

The superficial geology is topographically controlled, with the Clay-with-Flints Formation mapped on flat topographic highs, whilst Head deposits are found within the dry valleys, which in this area of Kent trend on a north east to south west alignment.

2.3 HISTORICAL INFORMATION

A detailed history of the site was provided within the Southern Testing report. The site was understood to have been former agricultural fields/wooded areas from as early as 1874. Several small chalk pits were noted across the wider development area between 1874 and 1907/08. None of the former chalk pits are mapped on or adjacent to Phase 1B of the development.

2.4 CONCEPTUAL MODEL

The conceptual model uses the data and evidence obtained during the investigation using the principle of "source-pathway-receptor". In this case, the source can be defined as the potentially infilled land on and around the site.

The potential pathways are considered to be the local geology and/or any infilled materials and the receptors are the end users and structures of the proposed development.

Following the risk assessment calculation in Appendix E, a low risk is concluded from infilled chalk pits, impacting upon the proposed end users and structures. An intrusive investigation was requested by the Client, as a form of due diligence prior to development taking place.

3. INTRUSIVE INVESTIGATION

3.1 FIELDWORK

The fieldwork was carried out on 17 April 2019 and comprised five windowless dynamic sampling holes. Subsequently, gas and water monitoring was carried out to gain information on the prevailing ground gas regime.

The exploratory hole positions were set out to target potential gas flow through natural strata towards and into the proposed structures as shown approximately on drawing $18.185 / G G R A / 02$. The National Grid references, and the elevation of the hole positions relative to Ordnance Datum, were measured using a Hemisphere S320 VRS GPS (RTK) system. A cable avoidance tool (CAT) was used to sweep the exploratory hole positions and the immediate surrounding area to locate any potential services and the location adjusted as necessary. A starter pit was also excavated by hand to a depth of 1.2 m at the hole positions to provide direct inspection for services or buried obstructions.

Sampling, soil descriptions and in situ tests were carried out in accordance with BS EN1997-2:2007 Eurocode 7 and its UK National Annex supported by BS 5930: 2015.

The windowless dynamic sampling holes, referenced WS101 to WS105, were carried out with a tracked window sampling rig to a target depth of 3.0 m below ground level (bgl). The sampling system utilises a 63.5 kg weight falling a distance of 750 mm to drive rods and sampling tubes into the ground, these are then extracted and the continuous samples described and subsampled for possible laboratory testing.

On completion of the holes, slotted standpipes were installed. The standpipes comprised a PVC access tube slotted at the base, surrounded by a granular filter, and sealed at the top by a bentonite seal. A gas bung was attached to the top of each installation to allow monitoring to take place. The standpipes were installed as detailed in the following table.

Windowless dynamic sampling hole	Depth achieved $(\mathbf{m} \mathbf{~ b g l})$	Standpipe Response Zone $(\mathbf{m} \mathbf{~ b g l})$	Target Stratum
WS101	3.00	$1.00-3.00$	Chalk
WS102	3.00	$1.00-3.00$	Superficial clay
WS103	3.00	$1.00-3.00$	Chalk
WS104	3.00	$1.00-3.00$	Chalk
WS105	3.00	$1.00-3.00$	Chalk
Table 1-Standpipe installation details			

The exploratory holes were monitored for groundwater ingress during fieldwork, but none was encountered.

Subsequent to the completion of the fieldwork, AFHA returned to site to carry out gas and water monitoring on three occasions (30/04/2019, 17/05/2019, and 22/05/2019) . Gas monitoring was carried out using a Geotechnical Instruments GA5000 portable gas analyser, in general accordance with the guidelines presented in CIRIA C665 (Wilson et al, 2007) and BS 8576:2013 and involved the following steps:

- Average flow was monitored for a period of one minute.
- Gases $\left(\mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{CO}\right.$ and $\left.\mathrm{H}_{2} \mathrm{~S}\right)$ were monitored for a minimum period of three minutes, if any significant readings were noted ($\geq 0.5 \% \mathrm{CH}_{4}, \geq 2.0 \% \mathrm{CO}_{2}$); the period was extended to ten minutes.
- Over the respective monitoring period, gas readings were logged every thirty seconds.

Details of the strata encountered, the sampling, monitoring records are shown on records appended to this report.

3.2 GROUND CONDITIONS

3.2.1 Soils

A broadly similar profile was found in each of the exploratory holes, which comprised shallow made ground or disturbed ground underlain by the Seaford Chalk Formation. However, the precise boundary between the two formations can be difficult to determine given the similarity in the deposits.

Shallow made ground and/or disturbed ground was encountered at each of the positions, with the exception of WS103, between 0.10 and 0.70 m thick. This material consisted of a silty variably clayey variably sandy flint and chalk gravel, with rare brick fragments in WS101.

The underlying natural soils comprised a sequence of structureless chalk (CIRIA Grade Dc/Dm), within each of the holes with the exception of WS102. In WS102 the natural soil was noted to comprise a silty slightly sandy clay with rare flint cobbles.

3.2.2 Ground Gas

The results of ground gas monitoring are summarised within Table 2 below.

				$\begin{aligned} & \text { Peak carbon dioxide } \\ & (\% \mathrm{v} / \mathrm{v}) \end{aligned}$				
WS101	$\begin{gathered} 1.00-3.00 \\ \text { Chalk } \end{gathered}$	3	0.0-0.1	0.4-1.4	17.2-18.6	0.2	DRY	996-1013
WS102	$\begin{gathered} 1.00-3.00 \\ \text { Clay } \end{gathered}$	3	0.0	0.7-2.3	19.0-21.2	0.2	DRY	996-1014
WS103	$\begin{gathered} 1.00-3.00 \\ \text { Chalk } \end{gathered}$	3	0.0	1.0-1.6	19.1-21.2	0.2-0.3	DRY	996-1014
WS104	$\begin{gathered} 1.00-3.00 \\ \text { Chalk } \end{gathered}$	3	0.0	0.7-1.6	19.0-21.6	0.1-0.3	DRY	996-1014
WS105	$\begin{gathered} 1.00-3.00 \\ \text { Chalk } \end{gathered}$	3	0.0	1.3-1.8	18.9-21.3	0.1-0.2	DRY	997-1014

Table 2 - Summary of gas and vapour monitoring results

The results show very low concentrations of methane between 0.0 and $0.1 \%(\mathrm{v} / \mathrm{v})$. Low concentrations of carbon dioxide were recorded across the site, between 0.4 and $2.3 \%(\mathrm{v} / \mathrm{v})$. Oxygen levels varied across the site between 17.2 and $21.3 \%(\mathrm{v} / \mathrm{v})$. Peak borehole flow values were between 0.1 and $0.3 \mathrm{I} / \mathrm{h}$. The monitoring was undertaken over a variety barometric pressures. As a result, it is considered that the dataset provides a good indication of the characteristics of the prevailing gas regime.

The concentrations of gases recorded on site, are broadly similar to the concentrations recorded on the neighbouring Phase 1A, although higher flow readings were recorded for Phase 1A (WSP, 2016).

4. GROUND GAS RISK ASSESSMENT

4.1 GENERAL

It is understood that the proposed scheme will involve the construction of residential properties with garages, private gardens, and associated infrastructure.

The proposed layout has been provided on a drawing by Halsbury Homes (South East) Limited, referenced W1C-01a and dated May 2018, a copy of which is appended.

The quantitative risk assessment presented below is intended to establish the potential risk to human end-users and structures from ground gas being generated from the identified on and off site sources.

4.2 RISK ASSESSMENT

4.2.1 Radon

The site is situated within an area potentially affected by naturally occurring radon gas, as between 3 and 5\% of homes are above the action level. In areas where radon may pose a risk, construction practices such as foundations provide a pathway for gases to permeate into building, which can then accumulate, concentrating and then posing a risk to human health. It is likely that basic radon protection measures will be required (BRE, 2015).

4.2.2 Methane, Carbon Dioxide, Oxygen, Carbon Monoxide, and Hydrogen Sulphide

Soil gas may also occur as a result of the degradation of organic matter, which can occur in buried landfill or within organic material. The gas composition varies according to the type and phase of breakdown that is occurring at any given time. Initially, carbon dioxide may be predominant, with significant quantities of hydrogen also being evolved. Methane (about 65\%) and carbon dioxide (about 35\%) are the major constituents produced during anaerobic/methanogenic phases of decomposition. Methane and carbon dioxide can develop explosive or flammable mixes with oxygen, or can cause oxygen depletion and act as an asphyxiate.

No concentrations of carbon monoxide or hydrogen sulphide were recorded during the monitoring regime. As such these gases are concluded to not pose a significant risk to the proposed human end users or buildings.

The risks associated with the remaining ground gases have been assessed in general accordance with BS 8485:2015+A1:2019 and CIRIA C665 (Wilson et al, 2007). These describe a characterisation system and provide a risk based approach designed to allow gas protection measures to be selected appropriately. The characterisation process begins by the calculation of a borehole hazardous gas flow rate (Q_{hg}) or gas screening value (GSV), both calculated in the same manner. $Q_{h g}$ is derived from the maximum recorded borehole flow ($1 / \mathrm{hr}$) and maximum concentration of a particular ground gas (\% (v / v)), either methane or carbon dioxide. The $Q_{n g}$ is calculated as follows:

$$
Q_{h g}=q\left(\frac{C_{h g}}{100}\right)
$$

Where,

$$
\begin{aligned}
& q=\text { borehole flow rate and, } \\
& C_{h g}=\text { maximum gas concentration. }
\end{aligned}
$$

For example, monitoring data giving a maximum flow rate of $3.5 \mathrm{l} / \mathrm{hr}$ and a maximum concentration of $4.0 \%(\mathrm{v} / \mathrm{v})$ methane would have a Q_{hg} of $0.14 \mathrm{I} / \mathrm{hr}[3.5 \times(4.0 / 100)]$.

The $Q_{h g}$ is then used to assign a characteristic situation to the site. These range from CS1 to CS6 and correspond with a very low to very high risk as shown in Table 2 of BS8485:2015+A1:2019.

In order to inform a choice of ground gas protection measures, BS 8485:2015+A1:2019 uses a pre-determined building type and the determined characteristic situation to derive a gas protection score. This takes into account the differing types of development which may occur on a given site and their relative sensitivities. The building types proposed here fit closest with the following description.

- Type A - Private ownership with no building management controls. Some small rooms present and probably traditional building construction. E.g. typical residential dwelling.

After the derivation of the gas protection score, gas protection measures, comprising structural barriers, ventilation measures and gas protection membranes, are chosen to meet the required score for the development. Each protection measure has its own score. This allows greater flexibility and choice over the gas protection measures employed in order to take into account construction methods or other site constraints. Gas protection scores and associated protection measures can be found in Tables 4-7 of BS 8485:2015+A1:2019.

The $Q_{h g}$ for methane and carbon dioxide and the corresponding characteristic situation (CS) have been calculated in the following table.

Window sample reference	Peak methane (\%)	Peak carbon dioxide (\%)	Peak flow $\mathbf{(I / h r)}$	$\mathbf{Q}_{\mathbf{h g}}$ methane	$\mathbf{Q}_{\text {hg carbon }}$ dioxide	Characteristic gas situation (CS)
WS101	0.1	1.4	0.2	0.0002	0.0028	CS1
WS102	0	2.3	0.2	0	0.0046	CS1
WS103	0	1.6	0.3	0	0.0048	CS1
WS104	0	1.6	0.3	0	0.0048	CS1
WS105	0	1.8	0.2	0	0.0036	CS1

${ }^{1}$ Increased from CS1 due to methane concentration greater than 1.0% (v/v) and/or carbon dioxide concentration greater than 5.0 \% (v / v), as per the table 2 of BS8485:2015+A1:2019

Table 3 - Calculated Q_{hg} and CS values

It is concluded that the site should be classified as CS1 (a site of very low risk), and it is concluded that no gas protection measures are necessary, with respect to potential, methane, carbon dioxide, depleted oxygen, carbon monoxide, or hydrogen sulphide.

4.3 GAS PROTECTION MEASURES

4.3.1 Radon

It is likely that radon protection measures will be required in the construction of new dwellings in accordance with BRE 211 (BRE, 2015). The two main methods of achieving radon protection in new buildings are active or passive. The passive method typically involves providing a barrier to the radon and, where the construction method allows, additional natural underfloor ventilation. The active method typically consists of providing
natural or mechanical (fan-assisted) underfloor ventilation as an integral part of the services of the building.

It is understood that basic protection measures should be sufficient for the proposed development (BRE, 2015), and as such a passive method of protection could be adopted. A well installed 1200 gauge damp-proof membrane (DPM) modified and extended to form a radon barrier across the footprint of the building should prove sufficient to meet the requirements of basic radon protection measures.

4.4 CONCLUSION

The site was noted to lie within an area potentially affected by radon gas. Basic protection measures will be required for any new dwellings constructed as part of the development. It is anticipated that a well installed 1200 gauge DPM should provide a suitable radon barrier.

Spot gas monitoring was carried out at the site. The gas regime for the site based upon the methane and carbon dioxide concentrations correspond to a characteristic situation 1 (a site of very low risk). No carbon monoxide or hydrogen sulphide was recorded. Based upon these results no additional gas protection measures due to methane, carbon dioxide, depleted oxygen, carbon monoxide, and hydrogen sulphide are considered necessary

The protection measures for radon gas provided are considered to be achievable within the context of the development and are typical of those required to provide the necessary mitigation for the identified risks. The approach outlined above does not constitute a detailed design of the gas protection measures and is specifically given as an outline of the combination of measures available to mitigate the prevailing risk. Therefore, the gas protection measures to be incorporated within the development should be subject to a detailed design once the exact construction details of the proposed structures are known and therefore the applicability of the various measures can be fully assessed.

5. SUMMARY

1. A ground gas risk assessment was carried out to support Phase 1B of the residential development at Whitfield, Dover, Kent.
2. The previous desk study for the entire development identified that the site former infilled chalk pits were present, which were concluded to not pose a significant risk to entire development, and only pose a localised risk within their immediate vicinity. Based upon this a ground gas risk assessment has been carried out to mitigate this risk for this stage of the development.
3. The site was situated within an area potentially affected by radon gas. Basic protection measures will be required for any new dwellings constructed as part of the development. It is anticipated that a well installed 1200 gauge DPM should provide a suitable radon barrier.
4. The investigation confirmed a layer of shallow made ground/disturbed ground overlying a sequence of structureless chalk (CIRIA Grade Dc/Dm), with the exception of WS102 which encountered a silty slightly sandy clay. Five monitoring wells were installed targeting the underlying natural soils.
5. Spot monitoring was carried out, maximum concentrations of $0.1 \%(v / v)$ methane and $2.3 \%(v / v)$ carbon dioxide were recorded. The gas regime for the site corresponds to a characteristic situation CS1 (very low risk), and it is concluded no additional protection measures with respect to methane and carbon dioxide are required.
6. No carbon monoxide or hydrogen sulphide was recorded during the monitoring, and as such are considered to not pose a risk to the proposed human end users or buildings
7. Gas protection should be provided to all buildings suitable to protect against radon. Following the completion of the gas protection measures, verification by an independent contractor should be sought, the findings of which should be submitted to the Local Authority for approval.

Prepared by:

Mr J A Hallier BSc (Hons) FGS

Checked by:

Mr B J Horne MSc BSc FGS

Authorised by:

Dr A F Howland MSc PhD DIC CEng FIMMM CGeol FGS

APPENDIX A: REFERENCES

A F HOWLAND ASSOCAITES LIMITED (AFHA). 2018a. A report on a ground investigation for Phase 1B and 1C residential development, Whitfield, Dover, Kent. Report ref. DJM/18.185, dated 6 July 2018.

A F HOWLAND ASSOCIATES LIMITED (AFHA). 2018b. A report on a ground investigation for Phase 1B and 1C residential development, Whitfield, Dover, Kent. Report ref. DJM/18.185/ADD, dated 10 August 2018.

A F HOWLAND ASSOCIATES LIMITED (AFHA). 2019. A report on a ground investigation at Richmond Park, Whitfield, Dover, Kent. Report ref. DJM/18.185/ADD02, dated 20 February 2019.

BRITISH GEOLOGICAL SURVEY. 2019. OpenGeoscience web site. Geology of Britain Viewer. www.bgs.ac.uk/opengeoscience

BRITISH RESEARCH ESTABLISHMENT (BRE). 2015. BRE 211. Radon: Guidance on protective measures for new buildings. British Research Establishment. Bracknell.

BRITISH STANDARDS INSTITUTION. 2015. BS 5930:2015 Code of practice for ground investigations. British Standards Institution. London.

BRITISH STANDARDS INSTITUTION. 2015. BS 8485:2015. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. British Standards Institution. London.

BRITISH STANDARDS INSTITUTION. 2015. BS 8576:201 Guidance on investigations for ground gas permanent gases and Volatile Organic Compounds (VOCs). British Standards Institution. London.

BRITISH STANDARDS INSTITUTION. 2017. BS 10175:2011+A2:2017. Code of practice for investigation of potentially contaminated sites. British Standards Institution. London.

DEFRA \& EA. 2004. Model Procedures for the Management of Land Contamination. Contaminated Land Report 11. Environment Agency, Bristol.

MALLET, H., COX, L., WILSON, S., CORBAN, M., 2014. CIRIA C735. Good practice on the testing and verification of protection systems for buildings against hazardous ground gases. CIRIA, London.

SOUTHERN TESTING LABORATORIES LIMITED. 2009. Overview Site Investigation Report at Whitfield, Dover. Report Reference J9733, dated 30 January 2009.

WILSON, S., OLIVER, S., MALLETT, H., HUTCHINGS, H., CARD, G., 2007. CIRIA C665. Assessing risks posed by hazardous gases to buildings. CIRIA, London.

WSP | PARSONS BRINCKERHOFF. 2016. Ground Investigation Report Sub-Phase 1A. Reference 70012378, dated December 2016.

APPENDIX B: WINDOWLESS DYNAMIC SAMPLING AND INSTRUMENTATION RECORDS

KEY
L
Plastic liner sample (from window sampler)

D
Small disturbed sample
$\mathrm{dd} / \mathrm{mm} / \mathrm{yy}$: $1.0 \quad$ Date, water level at the borehole depth at the end of shift dd/mm/yy: dry and the start of the following shift

Each sample type is numbered sequentially with depth and relates to the depth range quoted
All depths and measurements are given in metres, except as noted
Strata descriptions compiled by visual examination of liner samples obtained after BS EN1997-2:2007 Eurocode 7 and its UK National Annex supported by BS 5930:2015 and modified in accordance with laboratory test results where applicable

Remarks

Remarks

Remarks

Remarks

Remarks

APPENDIX C: GAS MONITORING RESULTS

Ground Gas Monitoring Results

Site : Richmond Park, Whitfield, Dover	Job Number 18.185
Client : Halsbury Homes (South East) Limited	Sheet
Engineer:	$2 / 3$

BH/WS	Date / Time	Flow Pod (l/h)	$\begin{gathered} \text { CH4 } \\ \text { (\%) } \end{gathered}$	Peak CH4 (\%)	$\begin{aligned} & \text { CH4 } \\ & \text { LEL } \\ & \text { (\%) } \end{aligned}$	$\begin{gathered} \text { CO2 } \\ \text { (\%) } \end{gathered}$	PEAK CO2 (\%)	$\begin{aligned} & 02 \\ & \text { (\%) } \end{aligned}$	$\begin{gathered} \hline \text { Min } \\ 02 \\ \text { (\%) } \end{gathered}$	Balance (\%)	$\begin{aligned} & \text { Baro } \\ & \text { (mb) } \end{aligned}$	Rel Pressure (mb)	$\begin{aligned} & \text { CO } \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & \mathrm{H} 2 \mathrm{~S} \\ & (\mathrm{ppm}) \end{aligned}$	Temp (${ }^{\circ} \mathrm{C}$)
WS101	30/04/2019 09:23:00	0.2	0.0	0.0	0.0	0.9	0.9	18.0	18.0	81.1	1013	0.0	0.0	0.0	10.8
WS101	30/04/2019 09:24:00		0.0	0.0	0.0	0.8	0.8	18.1	18.1	81.1			0.0	0.0	10.8
WS101	30/04/2019 09:25:00		0.0	0.0	0.0	0.9	0.9	18.0	18.0	81.1			0.0	0.0	10.8
WS101	30/04/2019 09:26:00		0.0	0.0	0.0	0.9	0.9	17.9	17.9	81.2			0.0	0.0	10.8
WS101	30/04/2019 09:27:00		0.0	0.0	0.0	0.9	0.9	17.5	17.5	81.6			0.0	0.0	10.8
WS101	30/04/2019 09:28:00		0.0	0.0	0.0	0.9	0.9	17.3	17.3	81.8			0.0	0.0	10.8
WS101	30/04/2019 09:29:00		0.0	0.0	0.0	0.8	0.9	17.2	17.2	82.0			0.0	0.0	10.8
WS101	17/05/2019 09:14:00	0.2	0.1	0.1	2.0	1.4	1.4	18.5	18.5	80.0	996	0.0	0.0	0.0	13.1
WS101	17/05/2019 09:15:00		0.0	0.0	0.0	1.3	1.3	18.6	18.6	80.1			0.0	0.0	13.1
WS101	17/05/2019 09:15:00		0.0	0.0	0.0	1.4	1.4	18.6	18.6	80.0			0.0	0.0	13.1
WS101	17/05/2019 09:16:00		0.0	0.0	0.0	1.4	1.4	18.6	18.6	80.0			0.0	0.0	13.1
WS101	17/05/2019 09:16:00		0.0	0.0	0.0	1.4	1.4	18.6	18.6	80.0			0.0	0.0	13.1
WS101	17/05/2019 09:17:00		0.0	0.0	0.0	1.4	1.4	18.6	18.6	80.0			0.0	0.0	13.1
WS101	17/05/2019 09:17:00		0.0	0.0	0.0	1.4	1.4	18.6	18.6	80.0			0.0	0.0	13.1
WS101	22/05/2019 12:24:00	0.2	0.0	0.0	0.0	0.4	0.4	18.6	18.6	80.9	1007	0.0	0.0	0.0	17.7
WS101	22/05/2019 12:25:00		0.0	0.0	0.0	0.4	0.4	18.5	18.5	81.0			0.0	0.0	17.7
WS101	22/05/2019 12:26:00		0.0	0.0	0.0	0.4	0.4	18.4	18.4	81.1			0.0	0.0	17.7
WS101	22/05/2019 12:26:00		0.0	0.0	0.0	0.4	0.4	18.3	18.3	81.2			0.0	0.0	17.7
WS101	22/05/2019 12:27:00		0.0	0.0	0.0	0.4	0.4	18.3	18.3	81.2			0.0	0.0	17.7
WS101	22/05/2019 12:27:00		0.0	0.0	0.0	0.4	0.4	18.3	18.3	81.2			0.0	1.0	17.7
WS101	22/05/2019 12:28:00		0.0	0.0	0.0	0.3	0.4	18.3	18.3	81.3			0.0	1.0	17.7
WS102	30/04/2019 09:40:00	0.2	0.0	0.0	0.0	2.3	2.3	20.6	20.6	77.1	1014	-0.1	4.0	0.0	10.8
WS102	30/04/2019 09:41:00		0.0	0.0	0.0	2.1	2.1	20.6	20.6	77.3			2.0	0.0	10.8
WS102	30/04/2019 09:41:00		0.0	0.0	0.0	2.3	2.3	20.6	20.6	77.1			3.0	0.0	10.8
WS102	30/04/2019 09:42:00		0.0	0.0	0.0	2.3	2.3	20.6	20.6	77.1			3.0	0.0	10.8
WS102	30/04/2019 09:42:00		0.0	0.0	0.0	2.3	2.3	20.6	20.6	77.1			3.0	0.0	10.8
WS102	30/04/2019 09:43:00		0.0	0.0	0.0	2.3	2.3	20.6	20.6	77.1			3.0	0.0	10.8
WS102	30/04/2019 09:43:00		0.0	0.0	0.0	2.3	2.3	20.6	20.6	77.1			3.0	0.0	10.8
WS102	30/04/2019 09:44:00		0.0	0.0	0.0	2.3	2.3	20.7	20.6	77.0			3.0	0.0	10.8
WS102	30/04/2019 09:44:00		0.0	0.0	0.0	2.2	2.3	20.7	20.7	77.1			3.0	0.0	10.8
WS102	30/04/2019 09:45:00		0.0	0.0	0.0	2.1	2.2	20.7	20.7	77.2			3.0	0.0	10.8
WS102	30/04/2019 09:45:00		0.0	0.0	0.0	2.0	2.1	20.8	20.7	77.2			3.0	0.0	10.8
WS102	30/04/2019 09:46:00		0.0	0.0	0.0	1.9	1.9	20.8	20.8	77.3			3.0	0.0	10.8
WS102	30/04/2019 09:47:00		0.0	0.0	0.0	1.8	1.9	20.9	20.8	77.3			3.0	0.0	10.8
WS102	30/04/2019 09:47:00		0.0	0.0	0.0	1.7	1.8	20.9	20.9	77.4			2.0	0.0	10.8
WS102	30/04/2019 09:48:00		0.0	0.0	0.0	1.6	1.7	20.9	20.9	77.5			2.0	0.0	10.8
WS102	30/04/2019 09:48:00		0.0	0.0	0.0	1.5	1.6	21.0	20.9	77.5			2.0	0.0	10.8
WS102	30/04/2019 09:49:00		0.0	0.0	0.0	1.4	1.5	21.1	21.0	77.5			2.0	0.0	10.8
WS102	30/04/2019 09:49:00		0.0	0.0	0.0	1.2	1.4	21.1	21.1	77.7			2.0	0.0	10.8
WS102	30/04/2019 09:50:00		0.0	0.0	0.0	1.1	1.2	21.1	21.1	77.8			2.0	0.0	10.8
WS102	30/04/2019 09:50:00		0.0	0.0	0.0	1.1	1.1	21.2	21.1	77.7			1.0	0.0	10.8
WS102	30/04/2019 09:51:00		0.0	0.0	0.0	1.0	1.0	21.2	21.2	77.8			1.0	0.0	10.8
WS102	17/05/2019 09:24:00	0.2	0.0	0.0	0.0	0.7	0.7	21.0	21.0	78.3	996	0.0	0.0	0.0	13.1
WS102	17/05/2019 09:25:00		0.0	0.0	0.0	0.7	0.7	21.1	21.1	78.2			0.0	0.0	13.1
WS102	17/05/2019 09:25:00		0.0	0.0	0.0	0.7	0.7	21.1	21.0	78.2			0.0	0.0	13.1
WS102	17/05/2019 09:26:00		0.0	0.0	0.0	0.7	0.7	21.1	21.1	78.2			0.0	0.0	13.1
WS102	17/05/2019 09:26:00		0.0	0.0	0.0	0.7	0.7	21.1	21.1	78.2			0.0	0.0	13.1
WS102	17/05/2019 09:27:00		0.0	0.0	0.0	0.7	0.7	21.1	21.1	78.2			0.0	0.0	13.1
WS102	17/05/2019 09:27:00		0.0	0.0	0.0	0.7	0.7	21.1	21.1	78.2			0.0	0.0	13.1
WS102	22/05/2019 12:34:00	0.2	0.0	0.0	0.0	1.3	1.3	19.2	19.2	79.5	1008	0.1	0.0	1.0	17.7
WS102	22/05/2019 12:34:00		0.0	0.0	0.0	1.2	1.2	19.1	19.1	79.7			0.0	1.0	17.7
WS102	22/05/2019 12:35:00		0.0	0.0	0.0	1.3	1.3	19.1	19.1	79.6			0.0	1.0	17.7
WS102	22/05/2019 12:35:00		0.0	0.0	0.0	1.3	1.3	19.0	19.0	79.7			0.0	1.0	17.7
WS102	22/05/2019 12:36:00		0.0	0.0	0.0	1.3	1.3	19.0	19.0	79.7			0.0	1.0	17.7
WS102	22/05/2019 12:36:00		0.0	0.0	0.0	1.3	1.3	19.0	19.0	79.7			0.0	1.0	17.7
WS102	22/05/2019 12:37:00		0.0	0.0	0.0	1.3	1.3	19.0	19.0	79.7			0.0	1.0	17.7
WS103	30/04/2019 09:57:00	0.2	0.0	0.0	0.0	1.5	1.5	21.1	21.1	77.4	1014	0.1	0.0	0.0	10.8
WS103	30/04/2019 09:58:00		0.0	0.0	0.0	1.4	1.4	21.1	21.1	77.5			0.0	0.0	10.8
WS103	30/04/2019 09:58:00		0.0	0.0	0.0	1.5	1.5	21.1	21.1	77.4			0.0	0.0	10.8
WS103	30/04/2019 09:59:00		0.0	0.0	0.0	1.5	1.5	21.2	21.1	77.3			0.0	0.0	10.8
WS103	30/04/2019 09:59:00		0.0	0.0	0.0	1.5	1.5	21.2	21.2	77.3			0.0	0.0	10.8
WS103	30/04/2019 10:00:00		0.0	0.0	0.0	1.5	1.5	21.2	21.2	77.3			0.0	0.0	10.8
WS103	30/04/2019 10:00:00		0.0	0.0	0.0	1.6	1.6	21.2	21.2	77.2			0.0	0.0	10.8
WS103	17/05/2019 09:36:00	0.3	0.0	0.0	0.0	1.4	1.4	21.2	21.2	77.4	996	-0.1	0.0	0.0	13.1
WS103	17/05/2019 09:37:00		0.0	0.0	0.0	1.3	1.3	21.2	21.2	77.5			0.0	0.0	13.1
WS103	17/05/2019 09:37:00		0.0	0.0	0.0	1.4	1.4	21.2	21.2	77.4			0.0	0.0	13.1
WS103	17/05/2019 09:38:00		0.0	0.0	0.0	1.4	1.4	21.2	21.2	77.4			0.0	0.0	13.1
WS103	17/05/2019 09:38:00		0.0	0.0	0.0	1.4	1.4	21.2	21.2	77.4			0.0	0.0	13.1
WS103	17/05/2019 09:39:00		0.0	0.0	0.0	1.4	1.4	21.2	21.2	77.4			0.0	0.0	13.1
WS103	17/05/2019 09:39:00		0.0	0.0	0.0	1.4	1.4	21.2	21.2	77.4			0.0	0.0	13.1
WS103	22/05/2019 12:42:00	0.2	0.0	0.0	0.0	1.0	1.0	19.1	19.1	79.9	1008	0.0	0.0	1.0	17.7
WS103	22/05/2019 12:43:00		0.0	0.0	0.0	0.9	0.9	19.1	19.1	80.0			0.0	1.0	17.7
WS103	22/05/2019 12:43:00		0.0	0.0	0.0	0.1	0.9	19.3	19.1	80.6			0.0	1.0	17.7
WS103	22/05/2019 12:44:00		0.0	0.0	0.0	0.9	0.9	19.1	19.1	80.0			0.0	1.0	17.7
WS103	22/05/2019 12:44:00		0.0	0.0	0.0	0.9	0.9	19.1	19.1	80.0			0.0	1.0	17.7
WS103	22/05/2019 12:45:00		0.0	0.0	0.0	1.0	1.0	19.1	19.1	79.9			0.0	1.0	17.7
WS103	22/05/2019 12:45:00		0.0	0.0	0.0	1.0	1.0	19.1	19.1	79.9			0.0	1.0	17.7
WS103	22/05/2019 12:46:00		0.0	0.0	0.0	1.0	1.0	19.1	19.1	79.9			0.0	1.0	17.7
WS103	22/05/2019 12:47:00		0.0	0.0	0.0	1.0	1.0	19.1	19.0	79.9			0.0	1.0	17.7
WS104	30/04/2019 10:10:00	0.1	0.0	0.0	0.0	0.8	0.8	21.5	21.5	77.7	1014	0.2	0.0	0.0	10.8
WS104	30/04/2019 10:10:00		0.0	0.0	0.0	0.8	0.8	21.6	21.6	77.6			0.0	0.0	10.8

APPENDIX D: DRAWINGS

Drawing 18.185/GGRA/01	Site Location Plan
Drawing 18.185/GGRA/02	Exploratory Hole Location Plan
Drawing W1C-01a	Halsbury Homes (South East) Limited - Proposed Site plan

${ }^{\text {North }}$

APPENDIX E: RISK ASSESSMENT CLASSIFICATION

Classification	Definition	Examples
High Likelihood	There is a pollution linkage and an event which would either appear very likely in the short term and almost inevitable over the long term, or, there is evidence at the receptor of harm or pollution.	Free product visible on surface of sensitive water body or in the soil. On site or adjacent gassing 'landfill site'.
Likely	There is a pollution linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.	Potentially contaminative land use i.e. 'Brownfield' site, fuel storage depot, factory, petrol station etc. Sensitive receptors to be introduced as part of site redevelopment. Potentially infilled land identified on off-site with credible migration pathway. site
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.	Potential source of contamination identified i.e. historical land use as allotments or domestic above ground fuel storage tanks, areas of burning garden waste. Possible off-site infilled land.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term.	No significant potential sources of contamination identified e.g. 'Greenfield' site. No potential sources of ground gas.

TABLE E1: CLASSIFICATION OF PROBABILITY

Classification	Definition	Examples
Severe	Short term (acute) risk to human health. Short term risk of pollution of sensitive water resource. Catastrophic damage to buildings/property. A short term risk to a particular ecosystem.	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Credible source of ground gas.
Medium	Chronic damage to Human Health. Pollution of sensitive water resources. A significant change in a particular ecosystem, or organism forming part of such ecosystem.	Leaching of contaminants from a site to a Secondary or Principal aquifer or watercourse.
Mild	Pollution of non-sensitive water resources. Significant damage to buildings/structures and crops ("significant harm" as defined in the Circular on Contaminated Land, DETR, 2000). Damage to sensitive buildings/structures or the environment.	Concentrations of a contaminant do not exceed the generic, or site specific assessment criteria. Leaching of contaminants from a site to an Unproductive Aquifer. Damage to building rendering it unsafe to occupy (e.g. foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as Personal Protective Equipment, etc).	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme.

TABLE E2: CLASSIFICATION OF CONSEQUENCE

APPENDIX E: RISK ASSESSMENT CLASSIFICATION (CONTINUED)

Classification	Definition
Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard or there is evidence that severe harm is occurring. The risk, if realised, is likely to result in a substantial liability. Urgent investigation and remediation will be required.
High Risk	Harm or chronic damage is likely to arise to a designated receptor from an identified hazard. Investigation is required and remediation is likely to be required to ensure the site is suitable for a proposed use.
Moderate Risk	It is possible that harm or chronic damage could arise to a designated receptor from an identified hazard. However, it is relatively unlikely that any such harm would be severe. Investigation and remediation are likely to be required to ensure the site is suitable for a proposed use.
Low/Moderate Risk	It is possible that harm or chronic damage could arise to a designated receptor from an identified hazard. Investigation is likely to be required. However, circumstances are such that investigation may prove the consequence to be mild and the site suitable for use without remediation.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard but it is likely that this harm, if realised, would at worst be mild. Investigation is unlikely to be required.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe. Investigation is not required.

TABLE3: DESCRIPTION OF RISK

N

A F Howland Associates
The Old Exchange Newmarket Road Cringleford Norwich NR4 6UF

Tel: 01603250754
Fax:01603 250749
Email: admin@howland.co.uk
www: http://www.howland.co.uk

