Technical Note TN01A

Capel Street, Capel-le-Ferne

Project No. 16038-01
February 2020

Client MR ODLIN
Author AS

Checked JB

1. INTRODUCTION

Preamble

1.1 In November 2016, Mr Odlin (the Applicant) submitted a planning application (reference 16/01316) to Dover District Council (DDC) for a development proposal at a site located between number 107 and 127 Capel Street, Capel-Le-Ferne, with description as follows:

Planning permission for the erection of 10 flats in 2 no. blocks (6×1 bed and 4×2 bed); and 31 dwellings (10x2 bed, 15x3 bed and 6×4 bed); plus associated access and parking (with appearance, landscaping and scale reserved)
1.2 The site is allocated for residential development within DDC's Land Allocations Local Plan, adopted 2015, under Policy LA26, with an estimated capacity of 40 dwellings.
1.3 The planning application was supported by a Transport Statement (TS), prepared by Markides Associates (MA). The TS described the proposed access arrangements, informed by speed surveys undertaken along Capel Street. The TS also identified proposed improvements to pedestrian infrastructure to ensure that the site was suitably connected with existing footway provision, therefore facilitating access to surrounding social infrastructure such as the nearby Primary School. The TS also included an assessment using the TRICS database to estimate the quantity of traffic generated by the proposed scale of development. Kent County Council (KCC), as the relevant local Highway Authority, provided their consultation response to the application, recommending that the proposed pedestrian crossing be moved north, that the proposals should facilitate widening of Capel Street between the site's proposed access and southern extent, that waiting restrictions should be introduced along Capel Street to accommodate visibility requirements and provide additional passing places and that any highways works should be the subject of an independent Road Safety Audit (RSA). A RSA was therefore undertaken in May 2017 and the development proposals were revised to reflect these KCC comments and subsequent comments within the RSA.
1.4 As a result of these amendments, KCC, within their consultation response dated June 2017, confirmed no objections to the proposals, subject to planning conditions. The application was subsequently taken to Planning Committee in September 2017 with an Officer recommendation for approval.
1.5 Despite this recommendation the planning application was refused. In February 2018 this decision was appealed (appeal reference APP/X2220/W/18/3196016). In May 2018 the Planning Inspectorate released their appeal decision, confirming the appeal was dismissed. The Appeal Decision also confirmed however that access and highway safety was not a reason for refusal, stating:
19. Access to the proposed development would be from Capel Street, which is a narrow and busy road through the village. Kent County Council Highways have commented and suggest that the proposed access to the development would not harm highway safety. I see no reason to disagree with their findings and conclude that the access would be satisfactory.
1.6 In June 2019, the same Applicant then submitted a planning application (reference 19/00669) for a revised development proposal at the site with an amended site layout and reduced scale of development totalling 34 units, with description as follows:

Outline application for the erection of 34 dwellings (8×2 beds, 16×3 beds and 10×4 beds) and means of access with associated landscaping (appearance, landscaping, layout and scale reserved)
1.7 The TS submitted in support of the earlier refused application was submitted in support of this current application and was not, therefore, consistent with the submitted site layout plans. To address this inconsistency, and in response to additional comments made by KCC, MA were instructed to inform revised access arrangements. A revised RSA was also prepared, dated August 2019, to which a Designer's Response was issued along with amended site access proposals detailed in drawings 19182-01-102B/104/105. Drawing 19182-01-103, detailing the previously proposed waiting controls to support the passing of conflicting vehicle movements on Capel Street was also issued to KCC.
1.8 Subsequent revisions to the indicative layout plan, A1382, were then made in order to address comments regarding the loss of on-street parking as a result of the introduction of on-street waiting controls, which it was asserted would impact on the ability of the highway to accommodate existing drop-off/pick-up activity associated with the primary school.
1.9 Following these revisions, the most recent KCC consultation response to this current application, dated $25^{\text {th }}$ November 2019, once again confirmed no objection to the proposals, acknowledging its allocated status and its previous consideration at appeal by the Planning Inspectorate.
1.10 Despite this position taken by the Highway Authority, case officer support, site allocation within the DDC adopted Local Plan, and the decision of the Planning Inspectorate with regards to highway related matters, Capel-Le-Ferne Parish Council oppose the current development proposals for reasons that include transport and access. They have therefore instructed a third-party consultant, Lime Transport, to prepare a representation, dated $15^{\text {th }}$ January 2020, which has been shared with MA.
1.11 MA have therefore been instructed to prepare this Technical Note (TNO1) in response to that representation.
1.12 The representation is substantive, however a number of the points made are repeated throughout the text, under separate sub-headings. TN01 therefore attempts to address the most salient points that are considered relevant to the consideration of the planning application, addressing points where they are first referenced within the representation.

2. SUSTAINABILITY

2.1 At Section 2.4, the representation makes a number of comments in relation to the sustainability of the site location in terms of proximity to social infrastructure and the use of sustainable modes of travel, essentially questioning the principle of residential development within this location.
2.2 It is clear, however, that the allocation of the site within the DDC Local Plan is evidence enough to confirm that DDC have already considered the site to be an appropriate location for residential development, a decision made with full knowledge of perceived constraints referred to within the representation.
2.3 The representation highlights that it is vital to provide safe, direct and convenient pedestrian routes to attractors such as primary schools. Development at this site achieves just that, facilitated by the proposed improvements to the pedestrian infrastructure and by introducing residential properties within an acceptable walk distance of the existing primary school. A likely effect of school places being taken up by this new local population is that it will eventually remove a proportion of existing trips to the school that are currently reliant on travel by car, potentially improving the current situation of localised congestion occurring during periods of school drop-off and pick-up.
2.4 The representation makes reference to CIHT guidance in relation to walk distances to public transport infrastructure, suggesting that as existing bus stop infrastructure is located outside of 'traditional' walk distances included within this guidance travel by bus is not feasible. However, a paper prepared by White Young Green, 'How Far do People Walk,' presented to the PTRC Transport Practitioners Meeting in July 2015, references research using the National Travel Survey, which identifies that the $85^{\text {th }}$ percentile walk distance to access a bus stop for people residing within the South East region is actually 800 m . The representation identifies average walk distances to access either eastbound or westbound bus stop provision of 825 m and so could be considered to be within an acceptable walk distance for a proportion of the future site residents.
2.5 The representation references 2011 Census data which suggests only 2% of people residing within the area commute to work using the public bus. However, this reference ignores other trip purposes such as education trips to secondary schools and retail trips, all of which could use the existing bus services to access higher order settlements that contain such infrastructure, such as Folkestone and Dover.
2.6 Whilst It is acknowledged that supporting development in this location will not force future residents to use a bus over a car, the location does at least give residents a genuine choice
of travel, which is a central theme of NPPF in relation to transport, as stated in paragraph 103:
"103. The planning system should actively manage patterns of growth in support of these objectives. Significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes. This can help to reduce congestion and emissions, and improve air quality and public health. However, opportunities to maximise sustainable transport solutions will vary between urban and rural areas, and this should be taken into account in both plan-making and decision-making."
2.7 With regards to footway provision, it is acknowledged that it is intermittent along Capel Street. However, with the introduction of the footway along the site frontage there is no section of Capel Street where footway is not provided on at least one side of the carriageway, with pedestrians travelling from the site required to cross Capel Street 3 times to access New Dover Road, including via the introduction of the informal crossing point proposed by the development. The footway along the site frontage, and informal crossing, can of course also be used by existing residents of Capel Street located north of the development site, where there is currently no such provision. Within the representation, reference is made to the single side footway provision and crossing reliance, inferring this creates an inherent concern regarding pedestrian safety. However, a review of the accident record along Capel Street, between the site and New Dover Road, reveals no incidents involving pedestrians within the last 5 years, evidenced below using the publicly accessible Crashmap service.

2.8 The development site is therefore considered to be sustainability located, a position reflected in its site allocation.

3. Site Allocation

3.1 At Section 2.1 the representation suggests that a number of pre-application recommendations have not been complied with and therefore the allocation objectives are not met.
3.2 Whilst the representation makes reference to pre-application advice, it should be noted that this advice relates to the refused planning application and is not necessarily the same advice
that has been issued for the current planning application, for which separate pre-application advice has been received.
3.3 In response to the concerns made by the representation under this sub-heading:

Vehicle Access from Capel Street impacting upon existing hedgerow.
3.4 Minimising the impact on the hedgerow should also be seen in the round with meeting obligations such as visibility splays, footway provision and carriageway widening, deemed necessary by KCC to make the development acceptable, and also the introduction of frontage development, which is another clear requirement of the Policy. Clearly meeting these requirements will have some impact on the existing hedgerow. Where possible, this impact has been mitigated by replacement planting to the rear of the proposed footway and elsewhere within the site. Such replanting along the site frontage can be designed sensitivity to ensure that forward visibilities at each of the access points are achieved, although it is noted that KCC have not raised any objection on this basis.

Footway connections are considered inadequate and unsafe.

3.5 MA disagree with the assertion that the footway connection is inadequate, a view shared by KCC as the Highway Authority. The proposed informal crossing is appropriately located along the likely pedestrian desire line, facilitated by the introduction of waiting controls and supported by the proposed footway on the eastern side of Capel Street, which is a specific requirement under Policy LA26

Street Lighting Assessment

3.6 It is not unreasonable for the provision of a street lighting design to be the subject of a suitably worded planning condition, addressed prior to commencement of development.

Frontage Development

3.7 The number of crossovers introduced to serve the frontage development has been reduced during the design development following consultation with KCC.

4. CAPEL Street

4.1 Section 2.2 of the representation references a number of points in relation to how Capel Street has been described and assessed in the TS. None of these points are considered material to the conclusions of the TS but nonetheless are dealt with in turn.

Width

4.2 The TS reference to Capel Street having a carriageway width of 6.5 m along the site frontage is acknowledged as an error. However, this point is essentially superseded by the fact that subsequent design revisions related to the refused application, which have been maintained with the current application, include KCC recommendations to widen the carriageway along the site frontage south of the proposed access to 5.5 m .

Speed Limit

4.3 Capel Street along the site frontage is subject to speed limits of 20 mph . The implementation of this limit occurred after the preparation of the TS to support the original planning
application. Given speed surveys undertaken at that time were subject to a higher 30 mph speed limit, it is highly unlikely observed speeds would have increased following a 10 mph reduction in speed limit and so it is clearly unnecessary to undertake additional speed surveys. Indeed, it might be reasonable to assume that, following the reduction in speed limit, observed speeds will have actually reduced. The visibility splay requirements adopted within the TS that have been used to inform the design are therefore robust.

Parking Controls

4.4 The TS omitting to include the description of H -bar restrictions has no material impact on the conclusions of the assessment.

5. TRAFFIC SURVEYS

5.1 Section 2.3 of the representation references concerns in relation to traffic surveys that have/have not been used to inform the TS.
5.2 Two ATC's were undertaken, at locations adjacent to the northern and southern extent of the site frontage. Southbound traffic related to the northern ATC and northbound traffic related to the southern ATC are therefore relevant.
5.3 This data is provided at Appendix A. The 'virtual day' worksheets confirm the $85^{\text {th }}$ percentile speeds referenced within Table 3.1 of the TS as 31 mph in a southbound direction and 28 mph in a northbound direction.
5.4 Table 3.1 also refers to peak hour and daily traffic flows and specifically 5 day (weekday flows). Upon reviewing the data to inform this response to the representation, it appears that the tabulated traffic flows are actually 7 day, rather than 5 -day weekday flows. Table 5.1 below therefore provides an updated set of flows relating to weekdays only, which is more relevant to indicate school traffic flows. In response to the rebuttal, the school afternoon peak (15.00-16.00) is also indicated as is the \% HGV's. In terms of \% HGV, the ATC survey does not discriminate 2 axle vans between LGV and HGV. It could therefore include vans below 3.5T and thus reflects a worst case scenario.

TABLE 5.1: ATC RESULTS (HGV \% IN BRACKETS)

Direction	$\begin{gathered} \text { AM Peak } \\ 08.00-09.00 \\ \text { (5 day } \\ \text { average) } \end{gathered}$	PM Peak 17.00- 18.00 (5 day average)	School PM Peak 15.00- 16.00 (5 day average)	Daily (5 day average)	85th Percentile Speed (mph) (7 day average)
Southbound	62 (7.7\%)	36 (4.4\%)	34 (4.1\%)	471 (7.3\%)	31mph
Northbound	58 (6.2\%)	37 (5.3\%	36 (3.9\%)	460 (6.7\%)	28pmh
Total	120	73	70	931	NA

5.5 Comparing Table 5.1 with TS Table 3.1, the correction to the weekday average results in 34 additional vehicles using Capel Street in the AM peak, 9 in the PM peak and 31 across the day. These corrections have no material effect on the conclusions drawn within the TS. Whilst local congestion associated with school drop-off / pick-up is acknowledged, the traffic flows confirm the position that Capel Street is indeed lightly trafficked.
5.6 The representation then makes a number of comments in relation to school pick-up and drop-off activity, the use of Capel Street as a rat-run, reliance on the route by HGV movements and non-compliance with traffic controls.
5.7 In response to this, the development proposal is located within walking distance of the primary school. Primary school children from the development will therefore access the school without reliance on travel by car and in the medium to long term this will result in a reduction in the number of vehicles accessing the school. It is noted that the school has a Platinum rated School Travel Plan, which aims to 'cut school-run congestion by encouraging walking, cycling or car sharing as well as improving road safety.' Development at this site location could therefore assist in achieving these aims.
5.8 In consultation with KCC, the development proposals also include additional passing places to address increase in conflicting vehicle movements, in the form of no waiting controls. KCC have confirmed within their consultation response that any associated Traffic Regulation Order (TRO) to address issues related to traffic flow or highway safety can be secured and they have the authority to dismiss erroneous objections.
5.9 Notwithstanding this point, the representation suggests that any traffic increase associated with the development will worsen this situation. Using trip rates included within the original TS, the scale of development will generate additional traffic movements during the peak hours totalling 19 vehicles. Such a change does not represent a significant increase in traffic in real terms. Furthermore, the representation ignores the fact that site residents could simply choose to avoid the congestion associated with the school by adopting travel patterns outside of these time periods.
5.10 Reference is made later in the representation, at paragraph 2.6.2, to the potential traffic associated with the development between the hours of 15.00-16.00 being higher than between 17.00-18.00, indicated in the TRICS output. However, applying the TRICS based two-way trip rates to the proposed scale of development results in 20 anticipated vehicle
trips between 15.00-16.00, vs 19 vehicle trips between 17.00-18.00, which is not a material difference. Furthermore, this higher trip generation between 15.00-16.00 is likely influenced by traffic movements during the school run, which developing close to the existing primary school will clearly address by likely resulting in lower vehicle movements than assumed based on the TRICS outputs, with proximity to primary schools not adopted as a defining factor for the TRICS site selection. Subsequent sections of TN01, which address comments in relation to trip generation, identify that the proxy sites used to generate trip rates have an average walk distance of approximately 700 m from the closest primary school, where as the subject site is within 150 m walk distance from the adjacent primary school. On this basis it is not surprising that trip rates between 15.00-16.00 are comparable with those during a traditional PM peak and in reality are anticipated to be lower.

Access Design and Visibility

5.11 The representation's critique of the quality of the project architect's Amended Proposed Highway Works drawing, at paragraph 2.5.2, is misleading given the achievable visibility splays are clearly indicated within drawing 19182-01-102REVB, submitted as part of the RSA.
5.12 Subsequent comments within the representation about the lack of baseline data are addressed above, with the appended survey data confirming the observed speeds referenced within the original TS submission, recorded at a time prior to the introduction of the 20 mph speed limit.
5.13 Subsequent comments made in the representation relating to visibility are addressed as follows:
i. The visibility to the left of the northernmost crossover of $2 \mathrm{~m} \times 48 \mathrm{~m}$, is described within drawing 19182-01-102REVB as the maximum achievable visibility to the centre of the carriageway. Reviewing the plan in detail, this length is actually 55 m . The splay does not therefore relate to a higher surveyed vehicle speed in this location as suggested within the representation.
ii. The representation helpfully describes the situations when the adoption of a 2 m ' x ' distance, as has been done at each of the private drives, is appropriate, as referenced within Manual for Streets 2. These situations are when the minor arm traffic is low and in low speed environments. The private drives are serving no more than two residential units and speed surveys have confirmed low vehicle speeds along Capel Street, even before the reduction of the speed limit to 20 mph . The application of a 2 m ' x ' distance is therefore completely appropriate for the private drives. Furthermore, the nearside approach for northbound vehicles and cyclists accommodates a 1.8 m footway. These road users will therefore see a vehicle emerging from the drive before it enters the carriageway and can therefore approach the driveway in an appropriate manner, thereby meeting the Kent Design Guide requirement, as stated within the representation, of assessing the risks of a vehicle using the junction.
iii. The visibility to the north of the northernmost driveway has been taken to the centreline of the carriageway given the availability of public highway
immediately north of the site boundary prevents the visibility splay from running to the nearest edge of the carriageway. The representation suggests such a practice is unacceptable because there are no physical features within the carriageway to prevent overtaking and therefore the visibility should be taken to the carriageway edge, with a y distance of only 25 m being achievable based on this method. In response:
a. In this exact location where the visibility splay enters the carriageway, there is a shared drive serving properties 142 and 144. It is highly unlikely therefore that a parked vehicle would be in this location as it would block access to this property;
b. The carriageway width in this exact location is narrow, measured at some 4.8 m , thus further discouraging vehicles to overtake;
c. In such situations, if not taken to the centre of the carriageway, it could be justified to measure the visibility splay to a position 1 m from the edge of carriageway as it is unlikely that a car, motorbike or cyclist would be wholly accommodated within a 1 m width from the kerbline. Adopting such an approach in this instance results in an achievable visibility splay of approximately 43 m , as indicated in the screenshot below, only 2 m less than the 45 m visibility requirement based on the observed speeds. To achieve the 45 m visibility splay, the splay is offset from the kerbline by 1.4 m . It is impossible for a car to be accommodated within such width, highly unlikely that a motorbike would be accommodated within such width so close to the kerbline if overtaking a car and highly unlikely that a cyclist would be travelling at 31 mph ;

d. If the kerbline visibility of 25 m is adopted, this stopping sight distance equates to a design speed of 25 mph . Whilst the observed speeds were recorded when the Capel Street speed limit was 30 mph prior to the speed limit change, the current speed limit is 20 mph and Manual for Streets indicates that a 25 m visibility splay is acceptable for this speed;
e. Finally, the location of the northernmost driveway was moved to its current location following a recommendation from KCC during the consultation period in order to achieve an appropriate visibility splay.

KCC is therefore accepting of the proposed crossover location and the achievable visibility splays.
5.14 The representation then comments on vehicle swept path analysis. Vehicle swept path analysis for the internal layout has not been provided given the internal arrangement is a reserved matter. In general, however, the indicative masterplan has been designed in accordance with Kent Design Guide standards.
5.15 In terms of swept path at the site access, a limited number of movement tests were undertaken to inform the current proposals. Lime Transport have however undertaken their own assessment.
5.16 Based on this analysis, the representation comments that the swept path of a refuse vehicle egressing the site overruns the centreline of Capel Street potentially into the path of an oncoming vehicle and that a refuse vehicle entering the site is reliant on the full site access. The site access junction is, however, designed to standard in terms of carriageway width (5.5 m for both the site access and Capel Street) and junction radii (approximately 5.5 m). Designing a junction to fully accommodate the swept path of a large refuse vehicle in this low traffic and low speed environment would completely overengineer the junction. Indeed, Manual for Streets 2 highlights at paragraph 9.4.11 that it is acceptable for large vehicles to occasionally cross the opposing lane at junctions and volunteers that the use of tight corner radii is a way of achieving speeds of 30 mph or below. In reality a refuse vehicle would not blindly turn into the path of an oncoming vehicle, with achievable visibilities allowing such a design vehicle to enter the carriageway when it is safe to do so. Furthermore, the refuse vehicle swept path included within the representation adopts a generous offset from the nearside kerb as the vehicle exits the site.
5.17 A similar response is also relevant to the representation comments about conflicting car movements, with the junction designed to standard in terms of carriageway widths and junction radii.
5.18 In terms of the comments about the shared private drives, the designer's response to the RSA confirmed these have been designed in accordance with KCC standard details and are therefore appropriate. Furthermore, the probability of conflicting movements at the driveways would be very low. In addition, whilst swept path analysis of the private drives was not included within the submission, tracking tests have been undertaken to demonstrate that the area in front of the houses with private drives north of the site access is sufficient to accommodate forward gear entry and exit, with screenshots below. It is acknowledged that for the first location the tracking goes beyond the defined parking spaces, but this area of hardstanding will be defined at reserved matter stage. Both large cars and medium sized cars using this access and parking area have been tested.

First shared private drive north of main site access

Second shared private drive north of main site access

Trip Generation

With regards to trip generation, the adopted trip rates have been fully considered by the local Highway Authority, with no objections raised. MA are of the opinion that they are representative of the site location.
5.20 Notwithstanding this position, we have reviewed the TRICS sites that were selected to inform the trip rates. These sites demonstrate an average bedroom ratio of 3.26 bedrooms per unit. The development proposal has an average bedroom ratio of 3.05 bedrooms per unit. Representation references to bedroom size can therefore be discounted. The TRICS sites also have an average parking ratio of 3.3 spaces per unit, which is comparable with the development proposals. Finally, the TRICS sites are, on average, approximately 700 m walk distance from the nearest primary school, where as the development proposal is less than

200m, which may account for the 15.00-16.00 trip rates within the TRICS output being comparable to the traditional PM peak.
5.21 Finally, the representation reference to the TS not considering activity associated with displaced car parking as part of the trip generation assessment is misleading as these trips are already on the highway network, accessing the school, and recorded as part of the traffic surveys. They do not, therefore, represent additional vehicle movements.

Parking Provision

5.22 With regards to parking provision, the representation suggests that there is insufficient visitor car parking and queries the allowance of some visitor provision accommodated on plot. It is evident from the indicative site layout that some of the units will be able to accommodate their visitor requirement on-plot within their individual private drives. Furthermore, there are likely to be areas within the layout where additional visitor parking can be accommodated, such as the northern square and subsequent reserved matter applications will define this. The representation is therefore incorrect to assume there are only 2 resident visitor parking spaces accommodated on site.
5.23 The development proposals have also accommodated additional car parking to mitigate the displaced parking on Capel Street as a result of the introduction of parking controls, with 12 formal bays indicated. These bays will not always be in use, indeed the primary reason for their introduction was to accommodate parked vehicles associated with the school run. They will, therefore, also be available to resident visitors at times outside of the school peak.
5.24 The proposed parking provision is therefore in accordance with adopted parking standards and aims to address the loss in on-street parking available to existing users of Capel Street as a result of the introduction of waiting controls.

Traffic Capacity

5.25 The representation infers that requirements of the Highways Officer in relation to traffic capacity has been ignored by the submission.
5.26 However, the fact that KCC Highways Officer has raised no objection to the proposals within their most recent current consultation response confirms that this is not the case.
5.27 Indeed following the submission of the original TS a mitigation strategy was prepared in consultation with KCC officers to introduce additional passing places along Capel Street.
5.28 References to trip generation during school peak hours are referenced earlier within this rebuttal.

Mitigation Measures

5.29 At Section 2.9, the representation references proposed Mitigation Measures.
5.30 The representation focusses, however, on the Amended Proposed Highway Works drawing, prepared by the project architect, in consultation with MA.
5.31 The access drawings included as part of the Designers Response to the Road Safety Audit were undertaken using an accurate topographical survey as the drawing base and therefore focus should be given to this drawing. The planning approval will be able to reference the drawings included within the Designer's Response as Approved Drawings that the delivery of the scheme will need to comply with. Furthermore, a subsequent S278 Agreement will be needed with the Highway Authority which will require the submission for approval of detailed design drawings of all the highway works.
5.32 Paragraph 2.9.2 of the representation is therefore redundant as these detailed points are related to the Amended Proposed Highway Works drawing and all of the comments are addressed within the Designers Response drawing.
5.33 With regards to the proposed carriageway widening not being referenced within the original TS, this is simply because the requirement to widen the carriageway did not arise until the KCC consultation response to the application was received and was thus included within revised plans post submission of the TS as a response to those comments.
5.34 With regards to the proposed pedestrian crossing location, again this is shown more accurately on the RSA Designers Response drawing. Again, the Highways Officer has raised no objection regarding the proposed location. The crossing location is offset from the drive serving property 120 , which should therefore be able to access the drive without over running the crossing location, especially given the dropped kerb is 4.4 m wide. The retaining wall north of the crossing location appears to be approximately 9 brick courses high, which amounts to approximately $0.6-0.7 \mathrm{~m}$. The wall is also set back from the carriageway edge, with the existing ground levels at the location of the crossing being marginally higher than the ground level adjacent to the wall. For these reasons pedestrian visibility from this location will be achieved. Indeed, for the reasons explained above in relation to vehicle visibility, given the low number of vehicle movements, it would be reasonable to continue the visibility splay 1 m offset from the kerbline, thus further reducing the influence of the wall.
5.35 In terms of the crossing location on the western side, a pedestrian visibility splay from the crossing location aligns in front of the adjacent boundary wall. A pedestrian standing just back from the kerbline will also benefit from increased pedestrian visibility that is likely to far exceed the relevant stopping sight distance.
5.36 The proposed footway provision on the eastern side of the carriageway is wholly accommodated within public highway. The referenced crossover serving property 112, with which the proposed footway connects, is within public highway.
5.37 Comments relating to the reprovision of displaced car parking are dealt with above. The site layout includes formal footway provision along the main access road, with the internal part of the site, being a low speed and low traffic environment perfectly conducive to a shared surface environment.
5.38 With regards to the representation comments on Traffic Regulation Orders, the KCC consultation responses confirmed that whilst they will consider objections, they have the authority to implement TROs where they believe they are necessary in relation to capacity or safety, advised by the Planning Inspectorate.

Policy

5.39 With regards to the representation comments on transport related planning policy, the Planning Inspector in relation to the previous planning application found no reason to object to the proposals on grounds related to highways and access and MA believe there are no material changes to this current application why such a position should not be maintained.
5.40 The development proposals are located within an allocated site, within walking distance of key infrastructure such as the local primary school, allowing residents to undertake some trips sustainably, and is a scale of development that will not have a severe impact on the local highway network. The development proposals will deliver improvements to infrastructure that will support sustainable travel.
5.41 The proposals are therefore in accordance with policy at National and Local levels.

Review of Road Safety Audit

5.42 The representation provides a commentary on the Road Safety Audit process that has been undertaken.
5.43 With regards to the access considerations, whilst access is not a reserved matter, there are clearly elements that will be addressed as part of subsequent detailed design stages, requiring approval from the Highway Authority, typically via a S278 Agreement, including detailed levels at site access and streetlighting.
5.44 With regards to the comments on the lack of vehicle swept path analysis, the representation has included this information itself, demonstrating that access is achievable, with this rebuttal addressing matters in relation to overrunning onto the opposing traffic lane, which is perfectly reasonable for this location.
5.45 With regards to the shared private drives, these are designed to KCC standard details.
5.46 The delivery of the highway works, including site access, will require the implementation of a S278 Agreement, which will therefore include an additional opportunity for KCC to agree to the proposals and/or make recommendations.
5.47 With regards to the representation comments on aspects the RSA did not cover, the majority of these points have already been addressed within this rebuttal.

Planning Submission

5.48 In terms of reference to the submitted Construction Traffic Management Plan, should the approving authorities consider that the document is not sufficient in detail then it is reasonable for construction to be dealt with as a Condition of any planning approval.
5.49 The submission and approval of a lighting assessment requirement can be a Condition of planning.

Summary and Conclusion

5.50 In summary therefore, the development proposals are at an allocated site, with a scale of development less than set out in the development plan policy. The allocation confirms that the site is inherently sustainable and indeed it benefits from reasonable proximity to a local primary school and an established bus corridor that provides access to higher order settlements.
5.51 The development proposals have been consulted on by KCC, the relevant highway authority, and they raise no objections to the proposals subject to planning conditions. Furthermore, development at the site has been considered by the Planning Inspector as part of an appeal of an earlier planning application for a greater number of dwellings. The inspector identified no reasons to dismiss the appeal on the basis of transport and access.
5.52 The development site can be accessed by all user groups and modes of travel, with safe pedestrian access facilitated by the introduction of additional footway provision and informal crossing infrastructure. Safe vehicle access across the site frontage is achieved based on existing speeds dictating visibility requirements. For the avoidance of doubt, third party land is not required to accommodate the required visibility splays.
5.53 The development proposals include an appropriate parking provision for the scale of development and also include a number of spaces to act as overspill parking for residents accessing their car given the introduction of waiting controls will reduce on-street capacity.
5.54 Subsequent detailed designs will confirm vertical alignments into and through the site and cover matters such as a street lighting design.
5.55 The adopted trip rates are based on proxy sites within the TRICS database that share similar characteristics in terms of parking ratios and bedroom ratios.
5.56 On this basis MA are of the view that there continue to be no highway or transport related reason why the development proposal should not be supported, a view shared by KCC as the relevant local highway authority and previously the Planning Inspectorate for a scheme of larger housing numbers than that which is the subject of this current application.

Appendix A - Traffic Survey Data

Footmark Surveys

```
Globals
            Report Id CustomList-226
            Descriptor Footmark Surveys
            Created by MetroCount Traffic Executive
    Creation Time (UTC) 2016-09-19T11:39:16
                Legal Copyright (c)1997-2014 MetroCount
            Graphic header.gif
            Language English
                Country United Kingdom
                    Time UTC + 60 min
        Create Version 4.0.6.0
                Metric Part metric
            Speed Unit mph
            Length Unit metre
            Mass Unit tonne
Dataset
            Site Name Capel N
        Site Attribute ATC }
            File Name C:\Users\Duncan\SkyDrive\Footmark\2016-2017\Data\Capel-le Ferne ATC\Capel N 0 2016-09-19 0044.EC0
            File Type Plus
            Algorithm Factory default axle
            Description Dover
                    Lane 0
            Direction 5
        Direction Text 5-South bound A]B, North bound B]A.
            Layout Text Axle sensors - Paired (Class/Speed/Count)
            Setup Time 2016-09-09T20:20:27
            Start Time 2016-09-09T20:20:27
            Finish Time 2016-09-19T00:47:27
                    Operator ZAP
        Configuration 00000000 8000 14 6a 6a 00 00 00 00 00 , Standard
Profile
            Name Default Profile
            Title ATC Report
        Graphic Logo
                    Header
                    Footer
            Percentile 185
            Percentile 295
                    Pace 10
            Filter Start 2016-09-10T00:00:00
            Filter End 2016-09-17T00:00:00
        Class Scheme ARX Cycle
            Low Speed 0
            High Speed 140
            Posted Limit 30
            Speed Limits 30 303030303030303030
            Separation 0.000
        Separation Type Headway
            Direction South
Encoded Direction 4
```


Footmark Surveys

lumn	
Time	24-hour time (0000-2359)
Total	Number in time step
Drop --00	15-minute drops (Hour steps only)
Drop --15	15-minute drops (Hour steps only)
Drop --30	15-minute drops (Hour steps only)
Drop --45	15-minute drops (Hour steps only)
Cls 1	Class totals
Cls 2	Class totals
Cls 3	Class totals
Cls 4	Class totals
Cls 5	Class totals
Cls 6	Class totals
Cls 7	Class totals
Cls 8	Class totals
Cls 9	Class totals
Cls 10	Class totals
Cls 11	Class totals
CIs 12	Class totals
Cls 13	Class totals
CI\% 1	Class percentages
CI\% 2	Class percentages
CI\% 3	Class percentages
CI\% 4	Class percentages
CI\% 5	Class percentages
CI\% 6	Class percentages
C1\% 7	Class percentages
CI\% 8	Class percentages
CI\% 9	Class percentages
CI\% 10	Class percentages
CI\% 11	Class percentages
CI\% 12	Class percentages
CI\% 13	Class percentages
Vbin 010	Speed bin totals
Vbin 1015	Speed bin totals
Vbin 1520	Speed bin totals
Vbin 2025	Speed bin totals
Vbin 2530	Speed bin totals
Vbin 3035	Speed bin totals
Vbin 3540	Speed bin totals
Vbin 4045	Speed bin totals
Vbin 4550	Speed bin totals
Vbin 5055	Speed bin totals
Vbin 5560	Speed bin totals
Vbin 6065	Speed bin totals
Vbin 65140	Speed bin totals
Vb\% 010	Speed bin percentages
Vb\% 1015	Speed bin percentages
Vb\% 1520	Speed bin percentages
Vb\% 2025	Speed bin percentages
Vb\% 2530	Speed bin percentages
Vb\% 3035	Speed bin percentages
Vb\% 3540	Speed bin percentages
Vb\% 4045	Speed bin percentages
Vb\% 4550	Speed bin percentages
Vb\% 5055	Speed bin percentages
Vb\% 5560	Speed bin percentages
Vb\% 6065	Speed bin percentages
Vb\% 65140	Speed bin percentages
JPSL 30	Number exceeding Posted Speed Limit
JPSL\% 30	Percent exceeding Posted Speed Limit
Vpp 85	Percentile speed
Mean	Average speed
SD	Standard Deviation

5 Day Average

		15 Minute Bin Drops				Number Vehicle Classes ARX Scheme												
Time	Hourly Totals	00-15	15-30	30-45	45-00	Cycles	Motor Cycle	$\begin{gathered} \text { Car or } \\ \text { Van } \end{gathered}$	$\begin{gathered} \hline \text { Car or } \\ \text { Van } \\ \text { Towing } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2 \text { Axle } \\ & \text { Van or } \\ & \text { Lorry } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \text { Axle } \\ & \text { Rigid } \end{aligned}$	$\begin{aligned} & \hline 4 \text { Axle } \\ & \text { Rigid } \end{aligned}$	$\begin{aligned} & \hline 3 \text { Axle } \\ & \text { Artic } \end{aligned}$	$\begin{gathered} \hline 4 \text { Axle } \\ \text { Artic } \end{gathered}$	$\begin{aligned} & \hline 5 \text { Axle } \\ & \text { Artic } \end{aligned}$	$\begin{aligned} & \hline 6 \text { Axle } \\ & \text { Artic } \end{aligned}$	$\begin{gathered} \hline \text { B } \\ \text { Double } \end{gathered}$	Double/ Road Train
0000	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0100	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
0200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0400	2	0	0	1	1	0	0	2	0	0	0	0	0	0	0	0	0	0
0500	2	0	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0
0600	10	3	2	4	2	0	0	9	0	1	0	0	0	0	0	0	0	0
0700	28	4	6	9	9	2	2	23	0	2	0	0	0	0	0	0	0	0
0800	62	11	20	19	12	1	0	56	0	5	0	0	0	0	0	0	0	0
0900	37	12	7	9	9	1	0	33	0	3	0	0	0	0	0	0	0	0
1000	29	8	8	7	7	1	1	25	0	2	0	0	0	0	0	0	0	0
1100	29	7	8	6	8	1	1	24	0	4	0	0	0	0	0	0	0	0
1200	33	11	11	5	5	1	1	29	0	3	0	0	0	0	0	0	0	0
1300	27	6	5	7	9	0	1	23	0	2	0	0	0	0	0	0	0	0
1400	33	5	8	9	11	1	0	30	0	2	0	0	0	0	0	0	0	0
1500	34	9	8	7	10	0	1	31	0	1	0	0	0	0	0	0	0	0
1600	33	7	8	9	8	0	1	28	0	4	0	0	0	0	0	0	0	0
1700	36	10	11	8	7	0	1	33	0	2	0	0	0	0	0	0	0	0
1800	30	9	10	6	5	1	2	26	0	1	0	0	0	0	0	0	0	0
1900	20	6	5	5	4	0	0	18	0	1	0	0	0	0	0	0	0	0
2000	10	2	3	3	2	0	1	9	0	0	0	0	0	0	0	0	0	0
2100	6	2	1	2	1	0	0	6	0	0	0	0	0	0	0	0	0	0
2200	3	1	1	0	1	0	0	3	0	0	0	0	0	0	0	0	0	0
2300	3	0	1	1	0	0	0	3	0	0	0	0	0	0	0	0	0	0
07-19	411	99	110	101	101	8	10	360	1	29	1	1	0	0	0	0	0	0
06-22	458	111	121	115	110	9	11	402	1	32	1	1	0	0	0	0	0	0
06-00	464	113	123	117	111	9	12	408	1	32	1	1	0	0	0	0	0	0
00-00	471	114	124	118	114	9	12	415	1	32	1	1	0	0	0	0	0	0

Footmark Surveys

```
Globals
            Report Id CustomList-226
            Descriptor Footmark Surveys
            Created by MetroCount Traffic Executive
    Creation Time (UTC) 2016-09-19T11:45:38
                Legal Copyright (c)1997-2014 MetroCount
            Graphic header.gif
            Language English
                Country United Kingdom
                    Time UTC + 60 min
        Create Version 4.0.6.0
                Metric Part metric
            Speed Unit mph
            Length Unit metre
            Mass Unit tonne
Dataset
            Site Name Dover S
        Site Attribute ATC 2
            File Name C:\Users\Duncan\SkyDrive\Footmark\2016-2017\Data\Capel-le Ferne ATC\Dover S 0 2016-09-19 0036.EC0
            File Type Plus
            Algorithm Factory default axle
            Description Dover
                    Lane 0
            Direction 7
        Direction Text 7- North bound AJB, South bound B]A.
            Layout Text Axle sensors - Paired (Class/Speed/Count)
            Setup Time 2016-09-09T21:40:33
            Start Time 2016-09-09T21:40:33
            Finish Time 2016-09-19T00:39:33
                    Operator DC
        Configuration 00000000 8000 14 6a 6a 00 00 00 00 00 , Standard
Profile
                    Name Default Profile
            Title ATC Report
        Graphic Logo
                    Header
                    Footer
            Percentile 185
            Percentile 295
                    Pace 10
            Filter Start 2016-09-10T00:00:00
            Filter End 2016-09-17T00:00:00
        Class Scheme ARX Cycle
            Low Speed 0
            High Speed 140
            Posted Limit 30
            Speed Limits 30 303030303030303030
            Separation 0.000
        Separation Type Headway
            Direction North
Encoded Direction }
```


Footmark Surveys

lumn	
Time	24-hour time (0000-2359)
Total	Number in time step
Drop --00	15-minute drops (Hour steps only)
Drop --15	15-minute drops (Hour steps only)
Drop --30	15-minute drops (Hour steps only)
Drop --45	15-minute drops (Hour steps only)
Cls 1	Class totals
Cls 2	Class totals
Cls 3	Class totals
Cls 4	Class totals
Cls 5	Class totals
Cls 6	Class totals
Cls 7	Class totals
Cls 8	Class totals
Cls 9	Class totals
Cls 10	Class totals
Cls 11	Class totals
CIs 12	Class totals
Cls 13	Class totals
CI\% 1	Class percentages
CI\% 2	Class percentages
CI\% 3	Class percentages
CI\% 4	Class percentages
CI\% 5	Class percentages
CI\% 6	Class percentages
C1\% 7	Class percentages
CI\% 8	Class percentages
CI\% 9	Class percentages
CI\% 10	Class percentages
CI\% 11	Class percentages
CI\% 12	Class percentages
CI\% 13	Class percentages
Vbin 010	Speed bin totals
Vbin 1015	Speed bin totals
Vbin 1520	Speed bin totals
Vbin 2025	Speed bin totals
Vbin 2530	Speed bin totals
Vbin 3035	Speed bin totals
Vbin 3540	Speed bin totals
Vbin 4045	Speed bin totals
Vbin 4550	Speed bin totals
Vbin 5055	Speed bin totals
Vbin 5560	Speed bin totals
Vbin 6065	Speed bin totals
Vbin 65140	Speed bin totals
Vb\% 010	Speed bin percentages
Vb\% 1015	Speed bin percentages
Vb\% 1520	Speed bin percentages
Vb\% 2025	Speed bin percentages
Vb\% 2530	Speed bin percentages
Vb\% 3035	Speed bin percentages
Vb\% 3540	Speed bin percentages
Vb\% 4045	Speed bin percentages
Vb\% 4550	Speed bin percentages
Vb\% 5055	Speed bin percentages
Vb\% 5560	Speed bin percentages
Vb\% 6065	Speed bin percentages
Vb\% 65140	Speed bin percentages
JPSL 30	Number exceeding Posted Speed Limit
JPSL\% 30	Percent exceeding Posted Speed Limit
Vpp 85	Percentile speed
Mean	Average speed
SD	Standard Deviation

Average Weekday																			
		15 Minute Bin Drops				Number Vehicle Classes ARX Scheme													HGV \% (Including 2 axle van)
Time	Hourly Totals	00-15	15-30	30-45	45-00	Cycles	Motor Cycle	$\begin{aligned} & \hline \text { Car or } \\ & \text { Van } \end{aligned}$	Car or Van Towing	2 Axle Van or Lorry	3 Axle Rigid	$\begin{aligned} & \hline 4 \text { Axle } \\ & \text { Rigid } \end{aligned}$	3 Axle Artic	4 Axle Artic	5 Axle Artic	6 Axle Artic	$\begin{gathered} \hline \text { B } \\ \text { Double } \end{gathered}$	Double/ Road Train	
0000	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0.0\%
0100	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	50.0\%
0200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\#DIV/0!
0300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\#DIV/0!
0400	2	0	0	1	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0.0\%
0500	2	0	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0.0\%
0600	10	2	2	4	2	0	0	8	0	1	0	0	0	0	0	0	0	0	14.0\%
0700	28	5	6	9	9	2	2	23	0	1	0	0	0	0	0	0	0	0	4.9\%
0800	58	12	16	16	14	0	1	54	0	4	0	0	0	0	0	0	0	0	6.2\%
0900	39	14	7	8	10	1	0	35	0	3	0	0	0	0	0	0	0	0	7.3\%
1000	29	7	8	7	7	1	1	25	0	2	0	0	0	0	0	0	0	0	6.2\%
1100	30	7	8	7	7	1	1	25	0	3	0	0	0	0	0	0	0	0	12.8\%
1200	29	10	8	6	5	0	1	25	0	2	0	0	0	0	0	0	0	0	8.3\%
1300	27	5	5	8	8	0	1	24	0	2	0	0	0	0	0	0	0	0	8.1\%
1400	26	4	6	6	10	0	0	24	0	1	0	0	0	0	0	0	0	0	6.1\%
1500	36	10	9	7	10	0	1	33	0	1	0	0	0	0	0	0	0	0	3.9\%
1600	33	7	8	10	8	0	1	29	0	3	0	0	0	0	0	0	0	0	10.2\%
1700	37	11	11	9	7	0	1	34	0	2	0	0	0	0	0	0	0	0	5.3\%
1800	29	8	10	6	5	1	1	26	0	1	0	0	0	0	0	0	0	0	4.1\%
1900	20	6	5	5	4	0	0	19	0	1	0	0	0	0	0	0	0	0	5.0\%
2000	10	2	3	3	2	0	1	9	0	0	0	0	0	0	0	0	0	0	4.0\%
2100	6	2	1	2	1	0	0	6	0	0	0	0	0	0	0	0	0	0	0.0\%
2200	4	1	1	0	1	0	0	3	0	0	0	0	0	0	0	0	0	0	0.0\%
2300	2	0	1	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0.0\%
07-19	402	101	103	97	101	7	10	357	1	26	0	1	0	0	0	0	0	0	6.9\%
06-22	448	113	115	110	110	7	11	399	1	29	0	1	0	0	0	0	0	0	6.8\%
06-00	454	114	116	111	111	7	11	404	1	29	0	1	0	0	0	0	0	0	6.7\%
00-00	460	115	117	113	114	7	11	410	1	30	0	1	0	0	0	0	0	0	6.7\%

Appendix B - Additional TRICS Analysis

